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KINETIC EQUATIONS AND DEPARTURES FROM LTE
J.M. Fontenla

Instituto de Astronomia y Fisica del Espacio
Argentina

RESUMEN. Se expone aqui un método que permite resolver en forma numérica
las ecuaciones cinéticas que presentamos y que describen las funciones
de distribucidén de los componentes de un gas formado por fotones, elec-
trones, protones, itomos e iones. Estas ecuaciones integrodiferenciales,
que se aplican en los casos de validez de las hipStesis estadisticas,
pueden describir situaciones apartadas del equilibrio termodindmico como
en el caso de las atmdsferas estelares, dando distribuciones que difie-
ren de la de Boltzmann y alin de la de Maxwell,

Se plantean las ecuaciones para el caso unidimensional y se propo-
ne utilizar el método de Newton-Raphson para resolver las ecuaciones, su
poniendo conocidas las condiciones de contorno, y se muestra cdémo calcu-
lar los apartamientos de las funciones de distribucidn respecto de la de
Maxwell para los casos en que sean pequeflos.

Luego, a través de esos apartamientos, se muestra cdmo calcular
los coeficientes de transporte y los limites de validez de la teoria de
esos coeficientes. :

ABSTRACT. We present a method for the nummerical solution of the kinetic
equations for a gas composed by photons, electrons, atoms and ions. The
gas is assumed to satisfy the statistical hypothesis. We show the in-
tegro-diferential equations that determine the distribution functions,
for situations departing from thermodynamical equilibrium as in stellar
atmospheres. These functions differ from Boltzmann's and even from Max-
well's function. We give the equations for a one-dimensional problem and
propose the use of the Newton-Raphson method to solve the equations for
given boundary conditions. We also show how to compute first order devia
tions from Maxwell's distribution, and, from these departures, how to
compute the transport coefficients and their range of aplicability. We
further suggest correction procedures for saturated fluxes.

I. INTRODUCTION

In the calculation of stellar model atmospheres is usual to write certain equations
to describe the state of the gas composed by photons and several species of particles.

For describing the state of photons, the radiation intensity is usually chosen, it
is directly related to the distribution function of photons. The variation of intensity is de-
scribed by the radiative transfer equation (Athay 1974) which corresponds to the Boltzmann
equation, on the assumption that the local derivative respect to time is zero. This is reasona-
ble since, through the characteristic lenght of variation of the atmospheric macroscopic para-
meters (hereafter called scale height), the flight time of photons is small.

For the deepest regions of the atmospheres, local thermodynamical equilibrium (LTE)
holds; this means that departures from the Planck-Boltzmann-Maxwell distribution functions are

small and can be accounted for by a first order term proportional to macroscopic parameters
gradients.
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414 JM. FONTENLA

In this situation, macroscopic parameters (temperature, velocity, and density) are
determined by hydrodynamical equations subject to boundary conditions. In these equations there
appear fluxes proportional to macroscopic temperature gradients; for instance, from the radia-
tive transfer equation, the radiation flux becomes proportional to the temperature gradient and
this flux has to be considered in the impulse and energy equationms.

The involved factors are the transport coefficients, not always well known; for in-
stance, in a paper by Verga (1982) there appear many coefficients which reflect the interaction
between radiation and matter. Examples of the aplication of LTE theory with a simplified set of
transport coefficients are found in Eddington's (1926) early papers.

As density decreases with increasing altitude in the atmosphere, there is some
height at which LTE becomes a bad approximation to the actual situation because the free path of
photons at some relevant frequencies becomes of the order or larger than the scale height. In
such a case, usually it is assumed that particles and photons depart significantly from Boltz-
mann and Planck distributions, but particles follow the Maxwell law with a first order correc-
tion which is assumed to be proportional to the macroscopic parameter gradients. We call this
approximation partial LTE (PLTE). The usual procedure is to solve simultaneously the radiative
transfer equation for photons at the relevant frequencies, the statistical equilibrium equations
for the different species of particles and the hydrodynamical equations for the gas of parti-
cles, including transport phenomenae, radiative force and radiative energy loss. Work of this
kind assuming stationary state were done by many authors as, for instance, Mihalas (1975),
Heasley and Milkey (1976) and Fontenla and Rovira (1983), and for a non-stationary case by Kneer
and Nakagawa (1976).

Examples of transport coefficients not well known are the thermal conductivity and
viscosity in partially ionized plasmas in PLTE, for the range of pressures, temperature and ion-
ization typical of stellar atmospheres; values for other cases were calculated and compared with
measurements, for instance, by Devoto (1968). At even smaller densities, in what is usually
called the transition region, even the PLTE can be a bad approximation because of the comparable
free path of some particles relative to the scale height.

In that case, particles may also depart significantly from Maxwell's distribution,
as it was shown by Rousell-Dupree (1980), and, in the extreme cases, it can be a nonsense to
write hydrodynamical equations and we are left with the kinetic equations only.

One of such problems is that of the radiatively driven stellar winds, where, as-
suming n, = 1EI0 cm~? and T = 1E4 K, and using Allen's (1973) formulae, one can calculate the
elastic collisions rate between electrons and ions of, say, C IV, which comes out to be 1E5 s-!.
If we assume an impulse exchange by collision of (2 Me k T)!/2, the impulse exchange rate be-
comes 4E-15 gr cm s™2. On the other hand, the rate of excitations is from 1E5 to 1E9 s™!, for
radiation temperatures from lE4 to 1E5 K, respectively, and the rate of impulse exchanged with
the radiation field (highly anysotropic) is lE-16 to 1E-12 gr cm s~2, respectively. These fig-
ures show clearly that in the conditions proposed for the region, which we can call the external
atmosphere, the mean velocity of the ions can depart significantly from that of the electronms,
giving rise to frictional forces, and may even develop two stream instabilities, all processes
leading to macroscopic dissipative mechanisms which can explain some observational facts, as it
was suggested by Fontenla et ql. (1981).

Another point to consider is the elastic impulse exchange between ions themselves.
Again, according to Allen's formulae, the rate of such elastic collisions is 1E3 s~! in the
previously mentioned conditions, and since NiNpWe, if we assume an impulse exchange by colli-
sion of (2 Mi k T)*! 2, the impulse exchange rate becomes 2E-15 gr cm s 2 which, when compared
with the radiative rate, justifies the use of a Maxwellian distribution function for the ioms,
only for some cases. In other cases, the departures can be large and even lead to a runaway
process similar to the one well known in the laboratory for plasmas subject to electric fields.

In view of the considerations made, it can be suspected that the real stellar winds
are quite far from the classical models by Lucy and Solomon (1970) and by Castor et al. (1975),
and realistic models need a more elaborated treatement of the interaction between radiation and
matter.

The first impulse when facing this kind of problems is to use the Montecarlo tech-
nique (James 1980) for simulating the problem by a computer, but one can see that, on one hand,
because the non-linear effects, critical bias functions can predetermine the solutions, and
boundary conditions or other restrictions sometimes become obscure, collisions, at small deflec-
tion angles between charged particules, require very long calculations and stability analysis is
long and difficult. On the other hand, a system of kinetic equations can describe better the
behaviour of the gas subject to boundary conditions, and, for simple symmetries, allow to cal-
culate solutions and their stability as well as the weight of the different terms, in a safer
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DEPARTURES FROM LTE 415

and faster way and to deduce general properties or approximations.

The purpose of this paper is, on one hand, to set up a system of kinetic equations
for describing the general problem, and on the other hand, to show how the equations can be
solved numerically for a one-dimensional case and can be applied for the calculation of trans-
port coefficients for LTE and partial LTE cases.

II. THE KINETIC EQUATIONS

We have developed the kinetic equations in the more general way following the Ehler
and Kohler's (1977) formalism. Assuming that all requirements related to statistics are satis-
fied, we describe the macroscopic system by the one particle distribution function, for each of
the present species,

We consider the phase space composed by the four dimensional coordinates (x, y, 2z,
ict) and the four dimensional momenta (py, Pys Pz, iE/c) where i is the imaginary unit, c the
velocity of light, E the total energy; the other variableg have the usual meaning. For a parti-
cle of rest mass m, always |p| = imc, and for a photon, |[P| = 0, so, given a particle, the im-
pulse have only three independent variables.

Following Ehler and Kohler, we write the volume measure on the space of orbital
phases, for particles of rest mass m

dw' = (p . do) an 1)

where dg is an space-time surface element, and df' the volume element in four momentum space for
that particle. Then,
dp_dp_dp
dﬂ' = ._..-X_Lz (2)
E/c

We have assumed a gas of particles which are essentially free; interactions between them are,
then, short-lived, compared with the time between such interactions. The particles are subject
to a general field which can include the autoconsistent field.

According to the definitions and assuming summation over repeated index, we have

N I

= 1 L van' = . o 3
g™ g ef W édou Ipf£' d £3udu (3)

(o]

where the integral over ® means integration over the whole momentum space, N being the number of

particle trajectories which cross the surface I, and j,,, the four-vector current density of” the
species. Then, if N is the volume density of particles,

. . E Ly acr .

Jy = 1f-é'f afn = 1N (4)

(o]

Redefining f' and df' in order to work with the state occupation number and the
state density, we write

3
£ = gy oge= ¥ ar ; oarx=Eag (5)
w hd c

w being the multiplicity of the state, and h, the Planck constant; then,

for particules ~  dT* = (25+1) ( %9)3 v5 B2 dB du do ,
Vo v v

for photons di* =2 (—) (—) d(—) du d¢ ,
[ Vo Vo

s being the spin of the particle, B, the velocity in units of the velocity of light, y, the
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416 JM. FONTENLA

relativistic corregtion y = (1 - 82)~1/2 and 6 and ¢, the spherical angles which define the di-
rection of vector p in the three dimensional space; p = cosf being the projection factor along
the z-axis. The quantity v, represents an arbitrary frequency taken to adimensionalize the va-
riable.

The force is assumed to include gravitational and Lorentz terms

Fomoy (D3+2074 L0 (;.§>j n
c c mc?y

where a is the gravitational acceleration, E and'B the electric and magnetics fiels, respect-
ively, e, the electron charge and Z, the ratio of the charge of particle to that of the electron.
The Liouville equations give for particles (see Ehlers and Kohler 1977), in cases of

small B,
mcy{Bmiif-+ liai+fln—ai+z—eEi+z—e-8(ﬁ.f)i|—-a—f-}=e s
axi c Jt e c c ’api

and, for photons,

hy (. _9f , 1af

c i c
ox; ot

) =e ,

where 1§ indicates the unitary vector in the direction of the impulse and T, is the collision
density for the particles considered.
It is convenient to write these equations in the following form, for particles,

Bni_a_f.+.];_a_f.+¢i (mcif)=€ R
ox; ¢ ot op;
and for photons
m,.@i.,.liﬁ:g 9
* c 3t
oX;
where
—6=3*+q* [§*+3(3,§*)\l
and ¢ = —L , for particles, or g = T , for photons;
mc-Y m
c

> >
E * and B * are the electromagnetic fields divided by the electron charge, 2 *=3/c and
T

mc?2

The collision term f{ for a particle of some species with a certain value of the im-
pulse, namely A, can be written with the use of a source term which does not depend on fa, but
depends on the other particle or impulse distribution function fp, fc, etc., and a sink term
which is proportional to fp, so that

=N _
NN (10)

Following Ehlers and Kohler, we adopt the definitions
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A
=1+ fA s for bosoms R
A (11)
f =1- fA , for fermions

Then, for instance, and since d0 = 0 dw, we have for the differential cross-section
for the binary collision of A and B that produce particles C and D,

B *
Ny LS foDf QAB o dw dﬂB ,

(12)

c.D
* +
Xy foBff QABodwdﬂB £

A

’

where the summation is over all collisions which can suffer a particle A, and the minus sign
holds when A's are bosons, and the plus sign, when fermions. The expression of Qpp is derived

from Ehlers and Kohler's definition of PAB

_ /n2, 2 2 g2 .2 1/2
QAB = (B At R B~ ZBABB coseAB - B AB p sin eAB) (13)

where O,p is the angle between ;A and ;B' This expression can be used even when one of the par-
ticles is a photon, in which case the corresponding B will be unity.

For the conditions prevailing in normal stellar atmospheres, degeneration is negli-
gible and £A = 1, for particles, thus in what follows we will not consider degeneration, except
in the case of photons.

Expression (10) is suitable for calculating the elastic collision densities when the
potentials involved are of short range, as collisions between neutral particles and photons. It
is also useful when dealing inelastic collisions and in such cases expression (12) include prod-
ucts of all intervening species distribution functionms.

When considering collisions we have to consider reactions as well, as elastic colli-
sions, an example of this is the hydrogen atom in which case we have elastic collisions, ion-
izations, recombinations, excitations, deexcitations, attachements and dissociations, each of
these processes has to be accounted for by a different term, and special care has to be taken
for including the reverse processes.

In cases of long range binary elastic interactions as for Coulomb potentials, one
can start from the expression

Ey =T (£.8) - £,£)) Qp 0 dw df* (s

where we assume that particles C and D correspond, respectively, to A and B, before the colli-
sion takes place.

In the last formulae one sees that when the deflection angle of particle A goes to
zero, the parenthesis also goes to zero and in the case of the Coulomb potential the cross-sec-
tion goes to infinite, leading to an undefined expression.

Writing W = Qqg and pg = py + p with p small, then, pp = pg - p. At this point
we follow Landau's (1936) formalism and develop the functions W, fc and fp) up to second order in
p replace them in formulae (14) and simplify terms. Taking into account collision symmetries,

we can write

/ of of .
E, =L & ]Gij( AfB- BfA)[dT(B*
/
dy N 9Py, opg,
1 3 hj
with (15)
1
Gij =51 Gpi Gpj W dw
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Analogous procedure can be followed in cases where degeneracy has to be taken into
account. G..
By defining Gi.* = —2) for dimensional purposes, we have
3 m2c?
A
9G, . * BfB
X', =Z /m?c? 2 _Z g4q=*
A A 3 3 B
Py, °Pp,
1 J
p 8fB BGi.*
® =2/ (6. *mCc —2-pnc —2 ¢ ) arx (16) ,
Ai W 1] A 3 A 3 B, B
Pg, Pa.
J J
= * *
wij LS Gij fB dﬂB ,

where summation is over all particles which can deflect projectile A, including A itself. With
this definition the kinetic equations for charged particles become modified as follows

2
gn —of . L3f (X + X"DE+ (8 + ¢.)(nC ] U, . (m?c2 —2 £ ,

i9x., ¢ ot . op. 1] 9p. dp.

i i i'%j

(17)
and, after some geometrical considerations, we have
21Q z,2 c? P g.8.-
i'* = AB ( AB g )2! A® Gi' + (B* - A%) _E;JL) (18) ,

J mz c? mAC2 ygz J g?

where g = ;AC . A* and B* are coefficients which depend on the differential cross-sections as
function of the deflection angle €, B and y are given by the projectile velocity of the cen
ter of mass and j: is the standard Kronecker's delta. -

Analogous treatement of deflections for non-relativistic cases can be followed from
many books as, for instance, Spitzer's (1962) it leads to the Focker—Planck equation. We call
here deflections the kind of binary elastic interactions which result in small angular devia-
tions of the particles; we treat them relativistically and we sum their corresponding collision
densities to those we call properly collisions and can be described by the standard Boltzmann
equation.

One important point is that the preceding derivation of Focker-Planck collision
terms correpsonds to binary collisions. As De Witt and Detoeuf (1960) have demonstrated in cases
where PLTE holds, these terms can also account for the main of the collective interactions and
there remains a contribution associated with the energy exchange between plasma waves and
charged particles. The latter can be calculated by including plasmon pseudoparticles, but this
is beyond the scope of the present paper. It has to be noted that, in principle, we cannot drop
out any term in (17) since the phenomenon we are interested in is precisely the effect of the
convergence of the terms.

In formulae (17), we can express the derivatives respec to impulse from the corre-
sponding spherical coordinates and write

not o fie Gt 5 (S 5
o, v 3B Y8 M YR - u%) 3 19) .

We can write the electromagnetic equations for a non-polarizable gas as
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V.E % = 473 2 [£ dT* ,
_V*._ﬁ * =0 s
$X—E> % = _ l 3§ * (20)

H]

c ot
$ > 1 QE * -
XxB * = = - 492 Z /nB £ 4AT%
c 0ot

where V is the gradient operator and summations are over all species. In regard to the coeffi-
cients in formula (15), they result from considering the system of reference of the center of
mass; their derivation can be followed from any book by considering the relativistic modifica-
tions in each step. Then, for the spherical coordinate system in the space of the impulses, in
which the direction of the impulse of particle A was along the z-axis prior to the deflection
by an angle e, we have

Al . (B! 3
G =G _ =-— o sin’e de
XX VYoo, QABg €0 ’
€1
- 2 _ 2 s
Gzz ﬂQAB g 580 o(l cos €)° sin € de (21)

the other components of tenser Gj; being null.

The values €¢ and €1 are the cutoff settings of the integrals and, in principle, are
respectively, equal to zero and to ¥, but since we are assuming small angles €, the value of &1
must be small for equations (15) to be valid. Anyway, since for the Coulomb potential the in-
tegrals diverge when €¢ goes to zero, the critical parameter is €9, one has, in consequence, to
consider Debye's shielding by the electrons (Spitzer 1962) and this can be done in two ways. The
first one is by considering a modified potential, Debye's shielded potential (Devoto 1968), for
the interaction, and the second one is by setting a limit of Debye's lenght 1p (Spitzer 1962) to
the impact parameter b in the interaction. The first alternative is, of course, theoretically,
the more correct one, but the error by taking the second one is unimportant for our calcula-
tions, according to De Witt and Detoeuf (1960).

Thus, we have adopted the criteria of setting in such way that the corresponding
impact bo is equal to Debye's lenght lD. By definition,

0 sin € de = b db (22)

which, due to the properties of 0, that implies
€0

0 q 0 sin € de (23)

For interactions between electrons we have adopted the cross-sections given by
Akhiezer and Berestetskii (1965) in the center of mass system

2 2 2 2 2 .
oo &L AL 43 oyl 4
me? 2y 3B2 \ sin*e sin’e 2y%-1 sin’e 7

(24)

Since the deflection angle ranges between 0 and /2, it is convenient to adopt the
adimensional parameter
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A=sin ! e .

With some algebra we obtain an expression for b as a function of A; the expression
is very complicated but, since A is much .larger than unity because of the smallnes of €, one
can write

2 2
b= (=) (ZY_'_I.);\
me? v? g2 (25)

and s s
1,v" 8

2
( Z9)(2y2-1)
mc

Integrals of equation (21) can be perfomed by introducing formula (24) and the de-
finition of X and by simplifying the results because A>>l; then, we have

T 2 2_ 2 ¢ 2_ 2 . Ao
G =6 =~ e’ (=) (E=L)" [man -2+ (=L 3) ,
o2 me? y3 g2 \ 4 2y2-1 47 X\
2 2 . 2 N Ao
Gz=1[QABg2(E__)2(.gX__:_1.)2(é_é.lnz_l_(L;l_)z(Zan_g_)J
Z ch ,Y3 62 4 2 2Y2_1 3 / >\1
(26)

Comparison between equations (26) and (18) gives the values of A* and B* for the
interaction between electrons and, assuming ln A¢>>1n A1>>1, we obtain that

* 2_
A = ( Zy*-1 Y2 1n Ag
ee ZY 2

* ~ 0 2
B, = @27

For interactions between electrons and ions we adopt the differential cross-section
given by Akhiezer and Beresteeskii (1965) for the Coulomb potential, which, in the laboratory
system of coordinates, is

1
1-82 sin? (&)
Z e? p 2

2 20k .y, €
4 =
mpc YPB o sin™( ) )J

(28)

with €' ranging from 0 to V; L is the projectile mass and, Bp and Yp are given by the pro-
jectile velocity. )
This formula has to be integrated over ¢', thus it can be used without transforming
the angle to the center of mass system.
Chosing '
€

COS( —2— )

A= -
. €

sin ( 5 )

we have, for A>>1,
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2 A
A*.z(LB_)Z In (=2)
et y_B2 A1

PP

in the case of 1ln A¢>> 1n A1>>1,

* 2
A,:(_IB_.) In Ao R
el YBZ

PP
*~0 2
Bei * | (29).

The value of )A; can be estimated from the partition of the impulse space and, since
Ap the smallest variation in our numerical partition,

A o= B (30)
Ap

this is the limit up to which we can consider an interaction as a deflection, that is, when the
deviation is not strong enough to bring a particle from one volume element in the space of the
impulses to another one; otherwise, we consider the interaction as a collision and use Boltz-
mann's collision density term.

For deflections between identical ions we believe that it is not a bad approximation
to use also expressions (27) and for different ions, to use formula (29), adequately modified. A
more accurate treatement should be to calculate the integrals from (21) and (23) for specific
elastic scattering differential cross-sections when available.

The B and Y for expressions (24) through (29) follow from the velocity of the pro-
jectile in the center of mass system of coordinates, whose velocity is given by

- p, +p
le A B ,
Pa,* P3,
and since
Pa, ~ "a%a ’
and > >
. - BA m, - M
= B (—> -1-:-) ’
1 A nA.
we have ) )
R B: - 0
RZ o y2 y2 A 8y - B Bpeost g
A B

m _—
A 2 2
mB+/1+YZYBQAB

(31)
where eAB is, again, the angle between the impulse of particles A and B.

III. THE ONE-DIMENSIONAL CASE

Let us assume that all macroscopic parameters are function only of the z-coordinate
and time, we can integrate equations (6) over angle ¢ and average equations (9) and (17); thus,
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dt* = 291(25+1) ( E‘% y? vy 582 dB du ,
* Vo ys ¢ NV y2 40V
dre = 41 (28)? (5-)% a( =) au ,

2
B e L B e (g woap (23, A oF

32 ¢ ot v a8 YR du (32)
32 F 3%f 3%f 3f 3f
=N+ 0 —-+0 —<+a, —+ 0y =—+ —
BB 5p2 MU g2 BU agau B 3B % S ’
of 5f
U - .f_ + l p— _f_ + Xf = 0N ’

0Z Cc ot

where the index f denotes the functions corresponding to photons. The coefficients o can be
defined from the mean, over the angle ¢, of equations (16), (17), (18) and (19).

The force ¢ is dependent on the electromagnetic fields E * and B #*, which, in the
present case, have only components along z-axis. Then, the electromagnetic equations become

*
B2 = cte. N
*
oE,
— —==41% 2 [f dt* (33)
3z
*
1 %
T 5= - 41 Lz JRuf dr* ,

and the force & is given by

# = af + g B (34)

When calculating the momenta of the kinetic equations numerical cancelation problems
can appear, which lead to wrong values for the fluxes. This can be avoided by decomposing all
functions of p in symmetrical and antisymmetrical components with respect to u; then,

£ = [f(+u) + £(-n) ) s

N =

£2 =

Nlr-

(£ - £¢w ) ’

and, with u ranging between 0 and 1,

dt* = 47(25+1) (‘-1‘1‘-9 )% vS B2 4R du ,
*_ Yo y3 (V2 40V
d'rf 8ﬂ(c)(\)o)d(\,o)du s
3E
—Z - 435z 15 qrx ,
5z
SE
L Z_ gz zopy £ (35)
c ot
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0* £2 4+ 0% £5 =%+ 02 £2 4+ 5 £ ,
P P P P
S+ 025 -n?+S 40268 ,
P p P p
where the operator expressions are
S _2
P 8z P 8 yB
.2
=2 2uolaxheopn (L L 0w) B, :
Pc st Y 98 T
2 2 2
Da=onge—§-+ua —a—+ocz 9 +ug~_3_+\OLS_3_ s
P 362 MU auz u 389U 38 u 3u
2 2 2
DS:dZB 24 ——3——+ag —-—3-+oc§—3+oca§— .
P 362 UM auZ U BBBU aB U au

Equations (35) can be expressed numerically by setting a partition in the (Z, t, B,
1) space, writing the derivatives, as finite differences and by impossing boundary conditions
closely related to the problem one is solving. Because of the definition of £S and £2, for u=0,
it is straightforward to write

o _ 22£5 _ 2af°
3 au? Au?
a a |
A AE , ot o (36a)
A Au u?

being Af = f£(Au) - £(0). Since, the inversion of the sign of B is equivalent to the inversion of
the sign of | plus a rotation of ¢ in T, we have, for B=0,

22£° _ 2ne° a2£°

;3 —=— - =0 ,

3?2 AR? 3B?

being Af = f(AB) - £(0)

For large B's one has to chose a cutoff value at which boundary conditions have to
be defined by the problem and do not have much influence on the results since the particles with
large R have negligible interaction with the bulk of the gas particles.

For the limit, y =1,

we

where Af = £(1) - £(1 - Ap.

We suggest to use a minimum of three values for y and ten values of R; in this way,
one obtains dimensions accesible to medium computers.

Once one has expressed numerically equations (35), one can solve the resultant sys-
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tem of equations by the Newton-Raphson technique, starting from initial values for the distribu-
tions and assuming stationary state. In this way, one can calculate the spatial evolution of fS
and f2; after this, it is possible to use eigenvalue techniques to evaluate stability, normal
modes and relaxation times for departures from stationary state.

The simplest case is that of only binary interactions. By using the previous defini-
tion of W and superscript indexes to show the directions along the z-axis of p,, Pgs Pc and pp,

respectively, we write, a point indicating that the terms that correspond to both signs are to
be added,

s_ s o Ao, S %
X ENT =L@ AT ) £ dw dry ,
R S *
X Ent=n @) £ ary ,
S _ P S S.S a_a R O S.S a.a *
no= IS (BQED + ELED) + (W W ) (£of, - foD)] dw dry
a _ 5 f[(w+'++-w+" —) (foa + fafS) + (w+.- +_w+.+ —)(fsfa _ faf55} dw(37l
n ¢ *¢'p ¢'n T *c¢'p/, g

and similar expressions for y', ¢' and all o values.

The sign on the left-hand side depends on A particle statistics, it is plus for
bosons, and minus for fermionms.

These properties simplify the problem of coefficient derivatives, which can be
stored when calculating the values of the coefficients.

IV. TRANSPORT COEFFICIENTS IN LTE

Starting with the Planck-Boltzmann-Maxwell distribution functions,

(eE/kT +

F o 1)

E/kT_, -1

Ff a(e 1) (38)

where E, is the total energy, k, the Boltzmann constant, and T, the temperature.
For photons, E = hv, and, for particles,

E=me?(y' - 1- 6,2) +¢ (39)
where y' depends on the velocity B' in the fluid system, € is the internal energy of that spe-

cies of particles and ¢ is the equilibrium force. Since we are dealing with a non-degenerate
plasma we can write in the present approximation

£5 o N E/KT | .S i
K

s Ne o B/t -1 S

ff = — (e = 1) "+ §f .
Ke

£2 = 5£2

a _ ..a

£; = Sfg (40)

where 6fs’a are the first order departures of the symmetric and antisymmetric parts of the dis-
tribution function, N, the density of the species involved, and K, the corresponding normali-
zation factors.
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ﬁ In the transport approximation one assumes that the Lionville operator applied to
é the zero order term of the distribution function is a first order quantity, and the operator,
1

i when applied to the first order term of the distribution function, gives a second order term.

Since the zero order part of the distribution function depends only on the thermo-

L dynamical variables, the results from equations (35), for a stationary case, allow us to write,

up to first order terms,

a a 2 a
Bu_af_J,q,;(_u_a_ of L (=y®) 3f y _ g ,
3Z Y 3B Y8 du
S S ) s
Bu 24 (L of [ (=p?) 3fF y_ .
9z Y a8 Y8 ou (41)
OF 3N , 9F 9By  3F aT 25 ¢S
r=22 22400 0,492 —-+mc<32F s

3N 9z 3B, 3z 3T 93z

where B, is the macroscopic velocity along z
equilibrium force.
By using the definition of F, one

T = yuF LdlnN_'_(_tﬁ eh\)/kT
£ dzZ kT eh\) kT-—l

for particles, we have

(] 2
1nN+( E _dan)dlnT_dY ¢ me )dBo+q*(mc )

and, 6@2, the perturbation on the force relative to
obtains, K« T® for photons, and then

dlnT\]
dz  /

-3) (42)

e

2

r=gur [ &
vz KT diInT

dz dBo kT dZ kT

The last equation can be simplified when treating non-relativistic plasmas, since in

such a case Ko« T 3/2

d In K 3
b
dInT 2
and
d'
LA A Bo - Bu
d

12
= = : 'Y'31+-B—— s
2

When calculating for a system where fluid is locally at rest, one can write

dy' d In N d dInT *
Loy s orery SR Rar, Beap BT en, :
dBo dz 0 4z dz
where, for particles,
FN = BMF s
2.2 ‘IIIC2
TB = B u< F ( _— ) s
0 kT
1 mc2
I‘E* = BUF q* (— ) s
z KT
I, = (=-2) 8w (43)
kT 2
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and, for the photons,

FN = uF ’
T = X =
Bo PEZ 0 ’
hv/kT
hy e
I'n=(— —===— - 3) uF
T KT eh\),’kT_1

In the present approximation, the zero order collision terms cancel and we are left
with the first order terms. Since the expressions of X2, X'?, 9z and D2 contain factors f2,
these coefficients become first order, while XS, x'°, 98, and D3, instead, can be expanded in
zero order and first order terms. P

Because of the mentioned reasons and equations (35), we can write

o §£5 = 6n° + ansF - & ey - sed (A 2B

y? 98
T +0 6£2=06n%+8D%F - (6% + 6x'®) - wg (H 3, (44a)
P P I

with
—_2
o =0 +xSH+of (B Lo B,

v? a8 Y8 u P

The values 6n, 8, 8X', §®' and 8D, are the corresponding first order terms and can
be expressed from their derivatives with respect to GfB,; thus,

S S
6xs=(§X§.)5f§+(§L)5fa ,
3f g2 B
B B
S S S anS a on> S S a (4iv)
n = (o) sf, + (S 85 + (L) 85+ (FLo) 6f
a C S D a D
3, 3fg L o

and similar expressions for 8X', §9' and SD_. The values of these derivatives can be from equa-
tions (37) for binary collisions and deflections, and, in other cases, they can be easily ob-
tained from the collision terms expressions.

In the present case, the derivatives in (44b) give matrices with null diagonal
terms, and, if one consider only binary collisions, some of these derivatives become null. This
implies that the first equation (46a) states that 8fS = 0, and the second equation (44b) can be
written in the matrix form, as

> =+ a
'+ M8 =0 (44b")
'S 3p2
5.3 +(_?bﬁ+§x'_a+ 2% w ¥y _Dpf\]
P a a a 3 a a
O T SRS S T

where in the expression of M all terms are matrix operators.
The solution of equation (44b') is, then,

> > > %
4N, Loyp, 4I0T,rossE) (4o
az B az az z

= -1 =1

> >
§f=-M T =-M . (FN

By comparing 8£2% with F one can check the hypothesis of small departures from
equilibrium for a given value of the thermodynamical variable gradient.
Tt is also possible to take account of the flux saturation efects in a way similar
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to the one proposed by Shvarts et al. (1981), by replacing the value of Gfa, for the harmonic
mean (§£fa! + F-1)-1,

By taking the appropiate momenta of 6fa, one can calculate the fluxes which enter
in the hydrodynamical equations; for instance, the fluxes of mass

g =1 JmBus£2 gt

the internal energy J_ = T feBus £2 dt*

the electric charge (current density) Jq = I [ zeBudf? dt

the impulse along the z-axis Jp = I / mcB?n28£% dr* (45a)
2

and

3
the thermal energy (non-relativistic cases) JT = I fmc? §—-qua dt*
2

where the summation is over all species of particles. There, the particle fluxes for each spe-
cies is given by

3y = TBuSEE at* (45b)

Expressions (45a) and (45b) can be written as a vector product by expressing numer-
ically the integral; thus,

> > g
J = V.8f (46a)
being
vV = mc262u2; ,
Py
3
V. =me? £, (46b)
T
2
V ->
= w
N, A

-> ->
where the vectors w and w, represent the integration weight for the distribution function over
the space of the impulses for all species of particles in the first case, and, only for specie
A, in the second case.

From (44c) and (46a), the general expression for the fluxes becomes

> _ > > - -> -> > *
Je-viT=-vi(r, S, Boyp AT, poxoge)y (47)
daz 0 az az z

From equation (47) one can define transport coefficients for the fluxes defined in
(45), but the usual coefficients are sometimes combinations of the coefficients that come from
(47).

In LTE, all related species (each one of which can become transformed into ther one)
densities are functions of some total element density and temperature through the Saha-Boltzmann
and equivalent formula, and photon density is set by the temperature; thus, there are linear
relations between the different

dinN .  dilar ,  41nN,
’ b
dz az az

where NA is element A density.
Element densities are, however, independent of each other, and, for them, it is easy
to define the self and mutual diffusion coefficients, and the mobility, which are given by

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985RMxAA..10..413F

L
[l

Gh

RVKAAZ. 1D

[Yel}
0,
&

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System

428 JM. FONTENLA
cy g = - Gy FT ) N, ,
AA A A
c, . =- @ BT )N
NANB NA NB B ’
= (VLT %) | (48)
CNAEZ ( NA EZ
respectively.

It is customary to define the other transport coefficients in a way that all fluxes
but the one in question are zero; thus, when applying a macroscopic variable gradient, it is
necessary to set values for the other gradients in order to set all fluxes but one equal to
zero.

It results, then, that customary transport coefficients are linear combinations of
the coefficients C, which result from (47); it is not our present purpose to show how they can
be constructed, but the question of their values will be the subject of further work.

In LTE one can consider the particles and photons as components of one gas which
has transport coefficients defined by both components, or one can separate the effects of par-
ticles and photons by writing separate flux contributions in the hydrodynamical equations.

For instance, in the second formulation one can define the diffusion coefficient
for radiative enerey diffusion, which can be expressed in terms of medium opacity, while in the
first formulation radiative energy diffusion is accounted for by the thermal energy flux and
fixed by the conduction coefficient and the temperature gradient.

In partial LTE the above developed formalism can be followed except by the fact
that related species have densities given by the statistical equilibrium equations, and photon
distribution cannot be approximated to Planck function, so we are forced to solve the equations
of radiative transfer from (32), statistical equilibrium equations derived integrating formula
(32) over the space of the impulses (there we can drop the elastic interaction terms since they
cancel) and the hydrodynamical equations for the particles. -

In the present approximation, equation of radiative transfer and statistical equi-
librium can be solved as a complete set and the result depend on the boundary conditions stated
for the radiation field, the solution is straightforward for optically thin plasmas. In this
scheme we think in the distribution function of photons (or, equivalently, the intensity) as a
variable which enters in all equations and whose value is defined by them.

The hydrodynamical equations contain, as in LTE, various fluxes which are propor-
tional to macroscopic variable gradients, but in PLTE, the photons impulse and energy fluxes
have to be explicity calculated and cannot be included in the transport coefficients. The
transport coefficients in PLTE do not coincide with those in LTE, and can also depend on the
medium intensity of the radiation field. In PLTE there also appears some extra (radiative)
transport coefficients which relate the radiation flux (H,)) with all remaining fluxes, some of
them can be called, for instance Cy , C , C , for the A particle, the electric charge and

ARy’ “qHy’ TTHy

the thermal energy fluxes, respectively. The complete set of radiative transport coefficients
can be calculated from equations (46a) by setting them for particles only, separating the parts
of 6n2 and Gxa which are proportional to §H, and including them in as term

ST GH\)d\)
By

V. CONCLUSIONS

We have presented a general form of kinetic equations which contain in itself the
Boltzmann, Focker-Planck, radiative transfer and Vlasov equations.

A simplified one-dimensional case is set by separating equations in symmetrical and
antisymmetrical components, which for the radiative transfer equations correspond to Feutrier
method (Mihalas 1978). Is is shown how they can be solved by the Newton-Rapson method under
certain boundary conditions.

Finally we showed a method which can be used in order to calculate transport coef-
ficients in the cases of LTE and partial LTE, giving values for the transport coefficients and
in the partial LTE case, also for photoeffects as, for instance, the ones that correspond to
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photoelectrical or photodiffusion effects. This method permits, also, to estimate the range of
validity of the transport coefficient approximation.

We are developing a computer program to run on a VAX 750 machine, in order to com-
pute the mentioned transport coefficients for a photon, electron, proton an hydrogen atom gas,
taking account of jonizations and recombinations as reactive procesess, elastic collisions and
deflections. The program is in an advanced state of development, but we are not yet ready to
publish results.

rTOB5RVKAA". LD,
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