Abstract
We give a complete description of a one-parameter family of periodic orbits in the planar problem of three bodies with equal . This family begins with a rectilinear orbit, computed by Schubart in 1956. It ends in retrograde revolution, i.e., a hierarchy of two binaries rotating in opposite directions. The first-order stability of the orbits in the plane is also computed. Orbits of the retrograde revolution type are stable; more unexpectedly, orbits of the "interplay" type at the other end of the family are also stable. This indicates the possible existence of triple stars with a motion entirely different from the usual hierarchical arrangement.