&,
™~
fo!

Kl
'
L]
']
[
(o]

1

RIK

Ly
(=]

]|
L

RevMezAA (Serie de Conferencias), 1, 257-266 (1995)

QUASI-GEOSTROPHIC VORTICES IN CIRCUMSTELLAR DISKS

Fred C. Adams and Richard Watkins
Physics Department, University of Michigan, Ann Arbor, MI 48109, USA

RESUMEN

Se discute la fisica de los vértices en discos circunestelares asociados con
objetos estelares jovenes, elucidando las propiedades fisicas basicas de esos sistemas
tormentosos localizados. Esos vértices pueden intensificar la formacién de planetas
gigantes a través de una inestabilidad gravitatoria, permitiendo a los granos de
polvo (elementos pesados) asentarse en el centro en una escala de tiempo corta.
La misma inestabilidad gravitatoria se ve también intensificada debido a que los
vortices producen una mayor densidad superficial local en el disco. Ademas,

pueden incrementar la disipacién de energia en los discos y de ese modo afectar su
acrecimiento.

ABSTRACT

We discuss the physics of vortices in circumstellar disks associated with young
stellar objects and elucidate the basic physical properties of these localized storm
systems. Many different types of vortices can exist in circumstellar disks. Vortices
may enhance giant planet formation via gravitational instability by allowing
dust grains (heavy elements) to settle to the center on a short time scale; the
gravitational instability itself is also enhanced because the vortices create a larger
local surface density in the disk. In addition, vortices can enhance energy
dissipation in disks and thereby affect disk accretion.
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1. INTRODUCTION

Circumstellar disks play an important role in the star formation process (see, e.g., the reviews of Shu,
Adams, & Lizano 1987; Bertout 1989; Beckwith & Sargent 1993). Through many recent studies, we now
have a reasonably good understanding of the basic physical properties of these disks, such as total disk mass,
temperature distributions, and radial size (e.g., Rydgren & Zak 1985; Rucinski 1987; Kenyon & Hartmann
1987; Beckwith et al. 1990; Adams, Emerson, & Fuller 1990). However, many different physical processes
occur in these systems and it is not yet known which processes are most important for disk evolution. In
this work (based on a recent paper: Adams & Watkins 1995), we study the basic physics of vortices, which
are essentially long-lived storm systems. We explore possible effects that vortices have on disk evolution and
dynamics. In particular, we show that vortices can enhance the formation of giant planets within the mechanism
of gravitational instability. Vortices can also enhance energy dissipation and thereby affect disk accretion.

The most well known and well studied example of a fluid vortex in an astrophysical setting is the Great
Red Spot of Jupiter (e.g., Ingersoll 1990). This stable swirling storm system has lived for many dynamical time
scales. Although the exact nature of the Great Red Spot remains somewhat controversial (see, e.g., Marcus
1993 and Petviashvili & Pokhotelov 1992 for different perspectives), the basic physics is known and provides a
starting point for this present work. In particular, we focus on quasi-geostrophic vortices and leave more complex
vortex models for future work. Similar vortices arise in most rotating fluid systems, such as the atmosphere and
oceans of the Earth (e.g., Ghil & Childress 1987). We note that vortices have also been studied in the context
of galactic disks (Korchagin & Petviashvili 1985; Korchagin & Ryabtsev 1991). These previous studies have not
included the self-gravity of the system and have not considered nearly Keplerian rotation curves such as those
found in circumstellar disks (see, however, Von Weizsacker 1944). In addition, two recent papers (Tanga et al.
1995; Barge & Sommeria 1995) also discuss planet formation and dust settling in vortices.

257

© Universitad Nacional Autonoma de Mexico « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995RMxAC...1..257A

&

™~

&

1y 258 ADAMS & WATKINS

‘%": 2. GENERAL FORMULATION

& In this section, we outline the derivation of the basic equation of motion for vortices in circumstellar disks.

9’; We make a number of approximations along the way. We consider the vortices to be small compared to the
radial position r in the disk; we thus invoke a local approximation. We can then separate the vortical motion
from the mean flow of the disk. We introduce both the vorticity and the stream function and obtain equations
in terms of these physical quantities.

We consider disturbances which are small compared to the radial extent of the disk. As a general trend,
the vortex size is roughly comparable to the scale height H of the disk and for thin disks H/r < 1. We thus
work in terms of the variables z and y centered on a point (ro, ¢o) rotating with the disk (see Figure 1).

Fig. 1.— Schematic diagram of local coordinate system.

As the next simplification, we separate out the mean flow from the disturbance. In equilibrium, the disk is
azimuthally symmetric and has no radial flow, i.e., v = 0 and v = vy = rQ(r). Here, we want to separate the
perturbed flow of the vortex from the unperturbed motion; we therefore write the azimuthal velocity v as the
sum of parts:

v =1+ v =rQ(r)+ vy, (2.1)
where €(r) is the unperturbed rotational speed as a function of radius. The equation of motion can then be
written in the form

[0: + (2 — Q0)0y]v+ (V- V)V +2Q(2 x v) + VR + Vipy + ur(8:2)§ =0, (2.2)
where v = (u,v1) is the perturbed velocity field. Notice the presence of the Coriolis term, 2Q(% x v), which

arises because we are working in a rotating frame of reference.

We want to write the equations of motion in terms of vorticity, instead of velocity. This approach makes
sense because we are interested in vortex solutions and vorticity is thus the relevant physical quantity. The
vorticity w is defined by

w=2-(Vxv), (2.3)

i.e., we consider only the 2 component. We now take the curl of the force equation and combine it with the
continuity equation. After some rearrangement, the resulting equation of motion becomes

D[‘iim:—"a”q]=n'r=o, (2.4)

where we have defined the operator D to be the total advective derivative operator,

DEB,+T(Q—QO)6!,+V-V, (25)
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and where we have defined T to be the total vorticity per unit surface density. This quantity Y, which we
denote as the vortensity, has two contributions: the perturbative part and that of the mean flow. The equation
of motion [2.4] implies that the total vortensity is advectively conserved.

For the vortices considered here, the fluid is nearly in a generalized type of geostrophic balance. Exact
geostrophic balance occurs when pressure forces are balanced by Coriolis forces, so that the inertial forces are
negligible. In this work, we generalize this concept to include gravity, so that both the Coriolis and gravitational
forces are balanced by the pressure force (see Figure 2). In particular, we write the velocity v in the form

v

= ﬁ[s x (Vhi+ V)], (2.6)

where € is the value of the rotation rate in the disk at the origin of the local (z,y) coordinate system. In the
geostrophic approximation, the vorticity ean be written

- L
~ 20,

w

(V2hy + V24y) . (2.7)

Thus, our equation of motion in the quasi-geostrophic approzimation now becomes

2Q + 7'6,,9]
(2

1
D [m (V2h1 + 41I'Gp1) + =DY =0, (28)

where we have used the Poisson equation to eliminate the gravitational potential in favor of the density. Equation
[2.8] represents the fundamental equation of motion for vortices in the quasi-geostrophic model. Here, the total
vortensity Y is advectively conserved. Furthermore, equation [2.8] defines the relationship between the total
vortensity and the density perturbation.

P

Fig. 2.— Schematic diagram illustrating geostrophic balance. For the case shown, both the Coriolis force (C)
and the gravitational force (g) point inward, whereas the pressure force (P) is directed outward.

3. BASIC RESULTS

In this section, we consider the simplest type of vortices in circumstellar disks. We discuss the limiting
case of point vortices and general linear vortices without self-gravity.
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For the simplest case of a point vortex, the vorticity is localized at a point in space. Vortices of this type
are the solutions to the simplest form of our equation of motion. For example, if we consider the rotation rate
Q and the total surface density o of the disk to both be constant, then the equation of motion simplifies to the
form

Dw=0. (3.1)

In other words, in this limiting case, the vorticity itself is advectively conserved. This equation of motion has
solutions which correspond to point vortices. Mathematically, we can write these solutions as

w = I'6%(x — xo), (3.2)

where §%(x) is the two-dimensional Dirac Delta function and xg is the position of the vortex. The quantity T,
which determines the magnitude of the vorticity, is called the circulation.

Once the vorticity solution is specified in the form of equation [3.2], we can determine the physical structure
of the vortex (Marcus 1993). We find the velocity field in a manner completely analogous to finding the magnetic
field produced by a line-like current, i.e.,

v = Lgﬁ, (3.3)

2rw

where we have introduced local cylindrical coordinates centered on the position of the point vortex (w is the
local radial coordinate). The density enhancement is determined by the condition [2.6] of geostrophic balance.
Notice that positive density enhancements correspond to negative values of the circulation I'. In other words,
the vortex motion must be clockwise (in the —¢ direction) for a positive density vortex.

For the next higher order of approximation, we consider the case of vortices with no self-gravity and we
consider only the leading order perturbations for Q and o. We also specialize to the case of a purely Keplerian
rotation curve and we introduce a stream function ® defined by

® = hy /20 so that v=2xV®. (3.4)
Departing slightly from the usual conventions (e.g., Marcus 1993), we define a Rossby wavenumber kg, i.e.,

kr=Qo/a. (3.5)

For circumstellar disks, this Rossby wavenumber is the inverse of the disk scale height (kg = 1/H). Putting all
of these approximations together, we thus obtain the expression

1
0'0(1")

T= [v2<1> —KLO+ ao.'c] , (3.6)

where the parameter ag = Q¢(2p—3)/4r. Notice that in general g can be either positive or negative, depending
on whether the surface density oo(r) ~ r~P decreases faster or slower than the rotation curve Q(r). For the
particular case of p = 3/2, we obtain ag = 0. Theories of the formation of protostellar disks suggest that disk
density profiles will have indices in the range 1 — 2 (see, e.g., Cassen & Moosman 1981; Terebey, Shu, & Cassen
1984). Thus, we expect g to be small and we can take p 2 3/2 and hence g = 0 as a starting approximation.

The solutions for the stream function, the velocity field, and the surface density perturbation are similar
to those of the point vortices discussed above. We can find these solutions as follows. We first construct
generalized vortensity profiles T that satisfy the conservation condition of equation [2.8]. We can then invert
the differential operator appearing in equation [3.6] to obtain the stream function ®. Given the stream function,
we can determine the velocity field of the vortex through the relation [3.4]. For example, for a given solution
T(x) for the vortensity, the solution for the stream function is given by

B(x) = oo(r) / d2x' G(x, XY T(x'), (3.7)

where we have taken oo = 0 and where G(x,x’) is the Green’s function corresponding to the differential
operator in equation [3.6]. This operator is simply the modified Helmholtz operator (in two dimensions) and
the appropriate Green’s function is made up of modified Bessel functions. Many different vortex solutions of
this type can be constructed (see Adams & Watkins 1995 for further detail). Here, we only remark that the
Rossby wavenumber kg determines the length scale on which the stream function ® changes; the velocity field
v changes on this same length scale. This scale A ~ 1/kg is comparable to the scale height H in the disk.

© Universitad Nacional Autonoma de Mexico « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995RMxAC...1..257A

&
™~

&
-ﬁi VORTICES IN CIRCUMSTELLAR DISKS 261
?
% 4. EFFECTS OF SELF-GRAVITY ON VORTICES
o In order to understand the effects of self-gravity on vortices, we proceed in the same fashion as in the
T previous section but we include the gravitational term. In this case we obtain
1 271'Gp1
T= V30 — k30 + ——— 4.1
oo(r) [ ROt Q I’ (4.1)

where we have again taken ag = 0. We now make a heuristic approximation to simplify the gravity term,

01 _ 00 _ 20082
nRZ =@M eg & (42)

where Z is an effective total height of the disk. We also define an effective Jeans wavenumber k; through
k2 = 4nGoo/a’Z . (4.3)
The expression for vortensity becomes

1
- Uo(r)

where we have defined an effective Rossby wavenumber kg in the second equality.

We can now directly see the effects of gravity on the structure of the vortex. With no self-gravity, the
Rossby wavenumber kg determines the length scale on which the vortex structure can change. Gravitational
effects appear in the equation with the opposite sign; as a result, gravity makes the effective Rossby wavenumber
smaller and hence makes the effective Rossby radius larger.

An important crossover point occurs when the gravitational contribution exceeds the (old) Rossby
wavenumber contribution and the total effective Rossby radius becomes imaginary. This crossover occurs when
kg = k;, which implies that 47Gog = Q2Z. If we also assume that the total effective height Z of the disk is
twice the usual thermal scale height in the disk, i.e., Z & 2a/8g, we obtain the crossover condition in the form

Qoa
7Gog

[V2e - kp0 + k30 = !

~ oo(r) [V2<I> B keff?q)] : (44)

where Qr is the stability parameter for gaseous disks (Toomre 1964). Here, when Q1 becomes less than 2,
the effective Rossby wavenumber becomes imaginary. Notice that we have assumed that the rotation curve is
purely Keplerian so that the epicyclic frequency « is equal to the rotational frequency 2. The parameter Qr
must be larger than unity in order for the disk to be stable to axisymmetric disturbances. Consideration of
non-axisymmetric perturbations in circumstellar disks suggests that the stability parameter must be (at least)
as large as Q7 ~ 2; otherwise the disks would be highly unstable and would have short lifetimes (e.g., Adams,
Ruden, & Shu 1989; Shu et al. 1990; Adams & Benz 1992; Laughlin & Bodenheimer 1994). As a result, many
young disk systems tend to live close to this crossover point. As disks evolve in time, they eventually lose mass
to the central star, the value of Q7 increases, and the effective Rossby wavenumber kesr approaches the true
Rossby wavenumber kpg.

5. PROGRADE/RETROGRADE ASYMMETRY

Within Keplerian circumstellar disks, vortices with positive circulation behave differently than vortices
with negative circulation. As we have discussed previously, in the present context, a vortex with a positive
density perturbation must have a negative circulation in order to achieve geostrophic balance. In other words,
a vortex with a positive density perturbation must rotate clockwise in the rotating frame of reference in which
we have been working. Now, suppose a planet (or other secondary body) forms within a vortex. This planet
would naively appear to be rotating in a retrograde sense. However, this apparent retrograde rotation (say, at a
rate 2p) must be corrected for the fact that the frame of reference is rotating as well in the opposite direction
(at the local Keplerian rotation rate ). As long as the “local” rotation rate Qp is smaller than the Keplerian
rotation rate 2, the secondary body will rotate in a prograde sense in the inertial frame of reference. Notice also
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that if Qp > Q (which implies an actual retrograde rotation of the planet), then the approximations leading to
our equations of motion break down.

Another important difference between vortices with positive and negative circulation is their lifetime and
stability. In a Keplerian disk, the mean flow velocity decreases with radial distance to the star. In our local
frame of reference centered on the vortex, the mean flow velocity is negative for £ > 0 and positive for z < 0.
As a result, vortices with negative (clockwise) circulation rotate “with the flow”, whereas vortices with positive
(anti-clockwise) circulation must directly oppose the flow; these latter vortices are defined as “adverse”. Detailed
numerical studies (cf. the review of Marcus 1993) show that adverse vortices are quickly ripped apart into long
filaments and fragments, i.e., their lifetimes are very short. On the other hand, vortices of the other type tend
to merge and grow into coherent structures. A complete discussion of the lifetime and stability of vortices is
beyond the scope of this present work. We stress, however, that the vortices with positive density perturbations
(negative circulation) are the ones most likely to live a long time in a Keplerian flow.

6. VORTEX GENERATION

Perhaps the most important unresolved issue is the manner in which these vortices are generated in the
first place. Thus far, we have found many different solutions to the equations of fluid dynamics; these solutions *
represent possible behavior of the circumstellar disk. However, before the astrophysical importance of vortices
can be established, one must understand the generation mechanism. In particular, the time scales for vortices
to grow and decay are important. In this section, we (crudely) estimate a time scale for the vortensity (or
vorticity) to change in a circumstellar disk.

One can argue that all differentially rotating fluid systems naturally produce vortical motions and hence
vortices must be important at some level. For example, the Earth’s atmosphere, the Earth’s oceans, and the
atmospheres of the giant planets all produce many different kinds of vortices such as those studied here. In
addition, many types of vortices can be easily generated in laboratory experiments (Nezlin & Snezhkin 1993).
Thus, one might naively expect vortices to arise naturally in circumstellar disks.

One important constraint on vortex generation is provided by Kelvin’s circulation theorem (e.g., Ghil &
Childress 1987; Shu 1992). This theorem states that for inviscid barotropic flow, the number of vortex lines
that thread a given area (that moves with the fluid) remains unchanged with time. Thus, for the case of
circumstellar disks which are nearly barotropic, vorticity is not automatically “generated” in these systems. In
the present context (see equation [2.8]), the total vorticity (per unit surface density) is advectively conserved.
This total includes both the vorticity of the perturbation and that of the mean flow. Thus, vorticity can be
freely exchanged between the mean flow and the perturbation, but cannot be directly generated (or destroyed).
We also note that, except under rather special circumstances, the mean flow is not unstable and does not
spontaneously transfer its vorticity into perturbations (vortices).

If the flow is not exactly barotropic, then vorticity can be generated directly. Consider, for example, the
force equation [2.2] with a standard pressure term of the form p~!Vp. When we take the curl of the force
equation to obtain the equation of motion for the vorticity, we obtain a forcing term of the form

1
szﬁVprp=§VprT, (6.1)

where we have used the ideal gas law p = pRT in obtaining the second equality. Clearly, for a barotropic
equation of state p = p(p), this new term vanishes. However, this forcing term will be nonzero whenever the
surfaces of constant temperature do not line up exactly with the surfaces of constant density. Such a situation
can occur in a circumstellar disk. In the absence of disk accretion energy, one important heating source for the
disk will be reprocessing of stellar photons; this energy source naturally leads to nearly axisymmetric surfaces
of constant temperature. On the other hand, gravitational instabilities naturally produce spiral patterns and
hence non-axisymmetric surfaces of constant density.

We now consider the idealized case in which the surfaces of constant temperature are exactly axisymmetric.
We will also assume that the disk has strongly growing spiral density perturbations so that the surfaces of
constant density are tilted at an angle ¢ with respect to axisymmetric surfaces. Spiral density wave theory in
the WKBJ limit (e.g., Shu 1992) implies that the tilt angle is given by

i~tani~ m/kr, (6.2)

where m is the azimuthal wavenumber of the perturbation and k is the radial wavenumber. For global modes
in circumstellar disks, we expect those with m = 1 to be the most important (Adams, Ruden, & Shu 1989;
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Laughlin & Bodenheimer 1994). We also expect the radial wavelength to be comparable to the radius and hence
i ~ 1/27. Given this set of approximations, the generalized equation of motion for the vortensity can be written

1 R
DY ~ %;Wﬂ |VT| - Fprs, (6.3)

where we have taken sini ~ ¢ ~ 1/2x. For completeness, we have also included a dissipation term Fpys.

Next, we want to estimate the time scale 7y for vortensity in the disk to be generated by the effect described
above. To make this estimate, we write DY ~ w/ory. We write the density gradient term as |Vp|/p ~ B/L,
where £ is the amplitude and L is the size scale of the spiral perturbation. Finally, we write the temperature
gradient term as [VT'| ~ ¢T'/r, where ¢ is the power-law index of the temperature profile. Solving for the time
scale, we obtain the estimate

27 wrlL

TV~

Bq a
where a is the sound speed. Very roughly, we expect 8¢ ~ 1, wA ~ a, and L ~ A, so that the time scale for
the vortensity to change is 7v ~ 27r/a ~ 500 yr. This time scale corresponds to several orbit times and is thus

interesting for the evolution of circumstellar disks. We stress, however, that this argument is extremely crude
and must be improved with an honest calculation.

(6.4)

7. ASTROPHYSICAL APPLICATIONS

In this section, we discuss applications of vortices to circumstellar disks. These vortices may enhance the
formation of giant planets and may provide enhanced energy dissipation for disk accretion.

One of the main difficulties in forming giant planets through the mechanism of gravitational instability is
that the planets are highly enriched in heavy elements (see, e.g., DeCampli & Cameron 1979; Stevenson 1982;
Cameron 1988). In the solar nebula from which the planets formed, most of the heavy elements are expected
to be in the form of dust grains. For most planet formation scenarios, the time scale for the dust grains to
migrate to the center of the forming protoplanet is too long to explain the observed enrichment. In addition, a
solid rocky core is found at the center of the giant planets; it is difficult for such a core to form at all in most
models. However, vortices can, in principle, provide a mechanism for separating dust and gas on a shorter time
scale and may provide a means of forming giant planets within the gravitational instability scenario.

In a rotating vortex system, the dust grains are not completely coupled to the gas. The grains do not
directly feel the pressure forces, but they are coupled indirectly through drag forces. Following convention, we
define a response time 74 which determines the time scale on which dust grains respond to the force exerted by
gas drag. For the regime of parameter space appropriate for circumstellar disks, the response time is given by

_ pafb)
T4 =

7.1
Spa (7.1)

where (b) is the average radius of the dust grains and p4 is the grain mass density (see, e.g., Weidenschilling &
Cuzzi 1993). For typical conditions (pg ~ 2 g/cm3, (b) ~ 107 cm, p ~ 10712 g/cm3, @ ~ 5 x 10* cm/s), this
time scale is relatively short, 74 ~ 2000 s. Under these conditions, the dust grains quickly reach their terminal
velocity, i.e., the force due to gas drag is balanced by the inward radial force (here due to Coriolis effects). This
terminal velocity vierm is given by

dh,
rm — e 2
te Tag— (7.2)

In order to estimate the time scale for dust grains to settle to the center of the vortex, we use the point vortex
solution found analytically in §3. If we use this solution in equation [7.2] and solve the resulting differential
equation, we obtain the following simple expression for the time scale Tgettie,

rettte = F
settle = 2 TdQOIrl )

where A is the assumed starting radius of the dust grain and is taken to be the vortex size. To obtain a numerical
estimate for the time scale, we let |T'| ~ aA (corresponding to a weakly nonlinear vortex) and we let the vortex
size be the inverse of the Rossby wavenumber, i.e., A ~ a/Qy. We thus obtain the dust settling time scale

Teettle = 2 X 108yt (R0 100yr)~2. (7.4)

(7.3)
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This time scale is comparable to that expected for dust settling in a hydrostatically supported protoplanet.
Furthermore, this time scale is too long to explain the observed element segregation in the giant planets in our
solar system. To overcome this difficulty, either the grain size must be larger or the vortex strength (as measured
by the circulation |T'|) must be larger than assumed here. For example, suppose we require the dust settling
time scale to be ~ 10° yr, roughly two orders of magnitude shorter than given above. This time requirement
can be met provided that mean dust radius (b) and the circulation T satisfy the following constraint:

{b) 1T
T a/kr 2 100 (7.5)

Since both of the above ratios are expected to be of order unity, we find that sufficient dust segregation to form
giant planets requires somewhat extreme conditions. However, in principle, both the circulation and the grain
size can be large and hence giant planet formation is at least possible in this scenario.

The above simple calculation can be generalized to obtain a more accurate description of dust settling in
vortices. Recent papers (Tanga et al. 1995; Barge & Sommeria 1995) have performed numerical integrations of
the equations of motion for dust particles in vortices and confirm that dust particles concentrate inside vortices
on a relatively short time scale.

Finally, we note that vortices enhance the formation of giant planets via gravitational instability by
increasing the local surface density. The perturbation requirements to form a secondary body in a circumstellar
disk can be written in fairly general form (Adams & Watkins 1995). The basic result is that a moderately large
perturbation, with density contrast § = Ao /o ~3-5, is required in order to form a secondary body.

We now briefly discuss how vortices can affect energy dissipation and hence accretion in circumstellar disks.
The overall effect of vortices is to provide additional avenues for energy dissipation in disks. We can identify
three conceptually different ways for vortices to participate in enérgy dissipation: (1) annihilation of vortices,
(2) energy dissipation within a single vortex, and (3) a cascade of vortices. However, we focus here on the
second mechanism (see Adams & Watkins 1995 for further discussion).

In order to consider the dissipation of energy within a single vortex, we think of the vortex as a small scale
analog of the circumstellar disk itself. As shown from our solutions to the equations of motion in the previous
sections, the vortices are strongly differentially rotating. Now suppose the fluid has a viscosity v, which we
parameterize in the usual way according to

v= gaaH ~ aal (7.6)

where A is the characteristic vortex size and « is the usual dimensionless “a parameter” (see, e.g., Pringle 1981).
The viscous diffusion time scale 7p is then given by

A2 AJa 1  6yr
TD~_N—~—~—-

v o Qo o’ (7.7)

where we have taken typical values to obtain the numerical estimate. Many studies of viscous disks suggest
that @ ~ 1072 — 10 (e.g., Lin & Papaloizou 1980; Lin 1981), which implies a vortex dissipation time scale of
Tp ~ 6 x 102 — 6 x 10% yr.

Because of the smaller size scale of the vortex, the energy dissipation rate is enhanced over the accretion
time scale of the disk as a whole by a factor f given by

f~(A/r)* ~100. (78)

Thus, for a given fluid viscosity, vortices are more efficient at dissipating energy than the disk as a whole. As a
result, vortices can play an important role in energy dissipation and hence disk accretion if a mechanism exists
to efficiently transfer energy from the mean flow into the vortex (see §6).

8. SUMMARY OF RESULTS

In this work, we have begun a study of vortices in circumstellar disks. These vortices are basically storm
systems in a generalized geostrophic balance, i.e., a balance between pressure forces, gravitational forces, and
the Coriolis force. We have obtained a number of basic results concerning the physical properties of vortices in
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circumstellar disks. Notice that some of the results given below are taken from Adams & Watkins (1995) and
are only summarized here:

[1] Many different types of vortex solutions are possible in circumstellar disks. In other words, circumstellar
disks can exhibit many different types of vortical motions.

[2] Point vortices are the simplest type of vortex. Their properties can be found analytically and hence
these vortices provide a prototype for understanding the basic physics of these systems.

[3] In the absence of self-gravity, the size scale A for this type of vortex is determined by the inverse of the
Rossby wavenumber, i.e., A = ¢/Q. For circumstellar disks, this size scale is comparable to the thermal scale
height H in the disk.

[4] The leading order effect of self-gravity is to make the effective Rossby wavenumber smaller. This effect,
in turn, makes the size of the vortex larger than in the case without gravity.

[5] Nonlinear effects can lead to qualitatively new behavior. In particular, under special circumstances,
solitary wave solutions can arise.

[6] Magnetic fields can have two different effects on the evolution of vortices. The fields exert a force on
the fluid and hence add an additional force term to the equation of motion. For the simplest case of a magnetic
field in the vertical (2) direction, this force corresponds to a magnetic pressure only. The second effect is to
allow for ohmic dissipation; for expected parameters in circumstellar disks, however, this effect is small.

[7] Circumstellar disks can, in principle, generate vorticity (or vortensity) through baroclinic effects. These
effects arise whenever the surfaces of constant density do not line up with the surfaces of constant temperature.
Disks can naturally obtain nearly axisymmetric temperature profiles (from reprocessing of stellar photons)

and non-axisymmetric density profiles (from self-gravitating spiral modes). The estimated time scale for the
vortensity to change is ~500 yr.

[8] Vortices can enhance the formation of giant planets through the mechanism of gravitational instability.
In particular, dust grains settle to the center of these vortices. In order for the time scale for dust settling
to be interesting for planet formation, either the dust grains must be quite large ({() > 1 pm) and/or the
vortex circulation must be very strong (|I'| > aH). Vortices also enhance the formation of giant planets by
gravitational instability by increasing the local surface density of the disk.

[9] We have derived a general argument which illustrates the conditions under which secondary bodies can
form in circumstellar disks. For moderately massive disks associated with young stellar objects, a moderately
large perturbation amplitude § = Ao /o ~ 3-5 is required to form a secondary.

[10] Planets formed in vortices should generally rotate in a prograde sense with respect to their orbits. In
order to produce a planet with retrograde rotation, the circulation of the vortex must be sufficiently strong that
the approximations used in this paper break down.

[11] Vortices can enhance the dissipation of energy in circumstellar disks and can thereby help disk
accretion. For a given fluid viscosity, vortices dissipate energy faster than the disk as a whole. The physical
reason for this enhancement is that the differential rotation in the vortex is strong and the size scale is short
compared to the entire disk. Thus, vortices can enhance disk accretion, provided that some mechanism exists
to transfer energy from the mean circumstellar flow into the vortices.

9. DISCUSSION

In this work, we have suggested that vortices may be important for both planet formation and for disk
accretion. An analogous dual role has-been claimed previously for gravitational instabilities in disks (e.g.,
Adams, Ruden, & Shu 1989), although the secondary bodies are usually considered to be “binary companions”
for this latter mechanism. In either case, it might seem paradoxical that one physical process can produce
two very different results — namely secondary bodies and disk accretion. However, this apparent contradiction
can be resolved for both mechanisms as follows: Energy dissipation and hence disk accretion arises for “failed”
structures, whereas secondary bodies can form only within “successful” structures.

We first consider energy dissipation and disk accretion. Self-gravitating spiral modes lead to disk accretion
when they saturate at a fairly low amplitudes (Laughlin & Bodenheimer 1994), i.e., when the instabilities
“fail” to achieve strong nonlinear growth. Similarly, vortices can lead to energy dissipation and hence help
disk accretion when they dissipate their energy faster than they can grow, i.e., when they also “fail” to achieve
strong nonlinear growth.

On the other hand, secondary bodies can be produced by either mechanism for the case of “successful”
structures. Self-gravitating spiral modes can collapse to form secondary bodies when they successfully grow

© Universitad Nacional Autonoma de Mexico « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995RMxAC...1..257A

RVWKAC..Z - "Z57A!

L0y
(=]

]|
L

266

well into the nonlinear regime; a density contrast # ~ 3 — 5 is required (Adams & Watkins 1995; see also
Bodenheimer & Laughlin 1995 in these Proceedings). Vortices can lead to giant planet formation if they are
sufficiently long-lived (so that dust grains collect at the vortex center) and/or highly nonlinear (so that they
must collapse gravitationally), i.e., if the vortices are “successful”.

This work represents a preliminary step toward understanding the physics of vortices in circumstellar disks
and related astrophysical systems. Many directions for future work remain. The most important unresolved
issue is the mechanism which generates vortices. Another important related issue is the stability and lifetimes
of vortices. Finally, we note that the overall goal of this work is to understand the dynamics and evolution
of circumstellar disks as a whole. Vortices play only a partial role in this process; thus, one challenge for the
future is to integrate vortices into the overall picture of disk evolution.
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