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RESUMEN

Discutimos el papel de la turbulencia en la formacién de nubes y estrellas,
segin se observa en simulaciones numéricas del medio interestelar. La compresién
turbulenta en las interfases entre corrientes de gas en colisién es responsable de la
formacién de nubes de tamafio intermedio ( < 100 pc) y pequefias (algunas decenas
de pc), aunque las mas pequefias también se pueden formar por la fragmentacién
de céascaras en expansién alrededor de centros de calentamiento por estrellas.
Los més grandes complejos de nubes (varios cientos de pc) parecen formarse por
un lento proceso de fusién de nubes individuales promovido por la inestabilidad
gravitacional. Este proceso se puede describir como una tendencia hacia la
homogeneizacion del medio a gran escala debida a la gravedad, més que como
colisiones entre nubes. Estos mecanismos operan también en presencia del campo
magnético y de la rotacién, aunque con ligeras variaciones en la compresibilidad
del flujo y la morfologia de las nubes que dependen de la intensidad y topologia
del campo. En resumen, el papel de la turbulencia parece ser doble: los modos
turbulentos pequenios contribuyen al soporte de las nubes contra su autogravedad,
mientras que los modos grandes pueden tanto formar como destruir nubes.

ABSTRACT

We discuss the role of turbulence in cloud and star formation, as observed in
numerical simulations of the interstellar medium. Turbulent compression at the
interfaces of colliding gas streams is responsible for the formation of intermediate
(<100 pc) and small clouds (a few tens of pc), although the smallest clouds
can also form from fragmentation of expanding shells around stellar heating
centers. The largest cloud complexes (several hundred pc) seem to form by slow,
gravitational instability-driven merging of individual clouds, which can actually
be described as a large-scale tendency towards homogenization of the flow due
to gravity rather than cloud collisions. These mechanisms operate as well in
the presence of a magnetic field and rotation, although slight variations in the
compressibility and cloud morphology are present which depend on the strength
and topology of the field. In summary, the role of turbulence in the life cycle of
clouds appears to be twofold: small-scale modes contribute to cloud support, while
large-scale modes can both form and disrupt clouds.
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1. INTRODUCTION

The interstellar medium (ISM) is a highly compressible turbulent flow (e.g., Dickman 1985; Scalo 1987;
Falgarone 1989) in which turbulent density fluctuations are likely to be ubiquitous. With a few exceptions,
however, most treatments of cloud dynamics and formation that include turbulence have traditionally considered
only the contribution of small-scale turbulent motions for cloud support against gravitational collapse (e.g.,
Chandrasekhar 1951; Shu, Adams, & Lizano 1987; Bonazzola et al. 1987; Léorat, Passot, & Pouquet 1990;
Elmegreen 1991; Vizquez-Semadeni & Gazol 1995). Actually, turbulent motions at cloud scales or larger may
have both cloud-forming and disrupting effects, which may be respectively associated with the compressive and
shearing modes of the turbulence. Although early contentions were that, being supersonic, turbulent motions
should dissipate rapidly (e.g., Goldreich & Kwan 1974), later studies suggested that the energy sources present in
the Galaxy (mainly stellar activity and galactic differential rotation) could be enough to replenish the turbulence
(e.g., Fleck 1980; see the review by Dickman 1985). Stellar energy injection originates mostly from OB winds
and supernova (SN) explosions, and the average rates for the Galaxy have been determined observationally by
a number of authors (e.g., Abbott 1982; Van Buren 1989).

Cloud and star formation (hereafter CF and SF, respectively) at the interfaces between colliding flow
streams has been discussed analytically by Hunter & Fleck (1982) and Elmegreen (1993). Low-resolution
hydrodynamical simulations of colliding flow streams were performed by Hunter et al. (1986), and the effects
of stellar forcing in the large-scale flow have been simulated by Bania & Lyon (1980), Chiang & Prendergast
(1985), Chiang & Bregman (1988) and Rosen, Bregman, & Norman (1993). Fully turbulent regimes in the
vertical direction in the galactic disk have been explored by Rosen et al. (1993) and by Rosen & Bregman
(1995). However, all of these calculations have omitted self-gravity and magnetic fields, and have employed
somewhat unrealistic SF schemes, thus rendering it impossible to discuss the full energy budget and the life
cycles of the clouds that form.

In this paper we discuss the interplay between turbulence, CF, and SF in our recent numerical simulations of
the ISM. The simulations incorporate stellar and diffuse heating with a more realistic SF scheme, parameterized
cooling, self-gravity and large-scale shear (Vazquez-Semadeni, Passot, & Pouquet 1995, hereafter Paper I), and
magnetic fields and rotation (Passot, Vizquez-Semadeni, & Pouquet 1995, hereafter Paper II). In §2 we briefly
describe the model system, in §§3 and 4 we discuss results without and with magnetic fields, and in §5 we
summarize the main conclusions.

2. THE MODEL

In the numerical calculations we consider a square region of the ISM, one kpc on a side, in the galactic
plane. The hydrodynamic equations are solved in two dimensions using a pseudospectral scheme with periodic
boundary conditions. Model terms are included for the diffuse and stellar heating and the parameterized
cooling. Additionally, a large-scale sinusoidal shear profile is imposed on the flow. In cases with rotation
and magnetic fields, the Coriolis and Lorentz forces are added to the momentum equation, together with the
induction equation. In all cases, Poisson’s equation for the gravitational potential arising from the density
fluctuations is also solved. Fiducial values of all parameters used correspond to realistic values for the ISM,

within the uncertainties reported in the literature. Details on the numerical scheme can be found in Papers I
and II.

All variables are normalized to values that can be considered typical of the ISM at a scale of one kpc. Thus,
the units of density, temperature and velocity are respectively po = 1 cm~3, T, = 10 K and u, = 11.7 km s™1.
Note that u, is chosen equal to the adiabatic sound speed at T5,.

Stellar heating is modeled as a local heating center a few pixels across; it is turned on when the local value
of the density exceeds a threshold p. and V -u < 0 locally, and turned off after a time equal to the typical
lifetime of OB stars (~ 5 x 108 yr). This mimics the heating from ionizing radiation from massive stars. The
diffuse heating is taken to be proportional to p~%, with 0 < a < 1, mimicking the self-shielding of clouds against
background UV radiation. Finally, radiative cooling is parameterized as a term pA, where A is a piecewise power
law of the temperature with exponent §; in the i-th temperature interval, of the kind introduced by Chiang &
Bregman (1988).

In magnetic runs, the total magnetic field is split into a constant, uniform azimuthal component B, and a
fluctuating component B ;.
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Fig. 1. Contour plot of the density field with superimposed vector velocity field for a 512 x 512 non-ma.gngtic
run, at ¢ = 8 x 107 yr into the evolution. Note that clouds are mostly located at the interfaces between colliding
flow streams.

3. NON-MAGNETIC RESULTS

One of the most immediate results from the simulations using the fiducial parameter values is that the
thermal (heating and cooling) time scales are much shorter than the dynamical (eddy turnover) time scales, a
result already pointed out by Elmegreen (1993). This has the interesting consequence that diffuse heating and
radiative cooling are almost always in equilibrium with each other (except at sites of SF, where the dominant
form of heating is stellar), and thus the temperature becomes exclusively a function of the density. In turn, the
ideal gas equation of state determines the thermal pressure, which then becomes a function of the density as
well, exhibiting a nearly polytropic behavior. Indeed, it is shown in Papers I and II that, far from SF sites, the
temperature and thermal pressure are given by

T p%. 11/8: T Yett r T p@ 11/B:
Teq=[ oPIC] P __Pleq _ P [ oPIC]

Aplte R A ¥

)

where ¥ = 5/3 is the ratio of specific heats for the gas, prc ~ 0.2 is a typical value of the density in the intercloud
medium (ICM), T, is the diffuse heating rate at p = pic, A; is the coefficient of the cooling function in the i-th
temperature interval, and ves = 1 — (1 + «)/f; is an effective polytropic exponent. For the chosen values of
a and f;, Yerr is smaller than 0.5 below 7' = 10° K. This implies that the flow is highly compressible and, for
practical purposes, the temperature and thermal pressure can thus be taken as being enslaved by the density
field, which is in turn controlled by the velocity field.

In the simulations, expanding bubbles around SF sites (“H II regions”) are the only very-high-pressure
regions and do not follow the above equilibrium relations. However, by the time their heating “stars” turn off,
they have reached sizes of only a few tens of pc, and the shells they produce continue to move inertially and
rapidly merge with the general turbulent flow. Therefore, although the smallest clouds form from the disrupted
shells, larger clouds basically constitute the turbulent density fluctuations in the flow, arising mostly where
larger-scale gas streams collide (Figure 1). This result is in agreement with earlier speculations by Hunter &
Fleck (1982) and Elmegreen (1993).

The largest clouds in the simulations (several hundred pc) appear to form by a combined effect of turbulence
and gravity. Intermediate-sized clouds appear to merge to form the largest complexes. However, these “mergers”
do not constitute “cloud collisions” in the usual sense, as the process is rather smooth and only noticeable when
comparing epochs separated by several 107 yr. In fact, this effect can be thought of more as a large-scale
homogenization of the flow by gravity, as exemplified in Figures 2a and 2b (see also the video accompanying
Paper I). This effect is not observed in runs with reduced or zero gravity, in which, in fact, the star formation
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Fig. 2. Contour plots of the density field for the same run as in Fig. 1, a) (left) at a) ¢ = 3.9 x 107 and b) (right)
at £ =15.1x 107, showing the trend towards homogenization at late times, apparently induced by gravity.

rate (SFR) decays rapidly to zero. The importance of gravity for large cloud formation is particularly interesting
because the initial choice of parameters ((T) = 10* K, (p) = 1 cm™>) for the simulations is such that the Jeans
length is Ly = (m¢?/Gpo)/? ~ 2 kpc — twice the size of the integration domain at ¢ = 0. However, we note that
the initial conditions are out.of equilibrium; the turbulent velocity dispersion in the domain is ~ 6 km s~! and
the system cools very rapidly to (T) ~ 6,000 K. Furthermore, a gravitational instability analysis considering
the effective barotropic behavior given by eq. (1b) (Paper II) gives an effective Jeans length

Yesrme? 11

Legt = [ e ] " 08-1.1kpe,

for yes ~ 0.5. Here, c is taken as the sound speed corresponding to the mean temperature in the simulations
(including the ICM). Note that this value of ¢ is typically slightly larger than the rms turbulent velocity
dispersion in the domain. Thus, the domain can be effectively gravitationally unstable after ¢ = 0. This
issue was not explicitly stated in Paper I, although it was speculated that self-gravity was responsible for the
formation of the largest clouds in the simulations.

Note that intermediate clouds that form from turbulent density fluctuations can also become gravitationally
unstable, as suggested by the simulations in Paper II, which cover a range including lower values of Yef.
In fact, simulations in which SF is not allowed (Vazquez-Semadeni & Mendoza, 1995), exhibit collapse of
intermediate-scale clouds generated by turbulent fluctuations. Thus, SF itself prevents further generalized
collapse of gravitationally unstable clouds as it generates more turbulence (Franco & Cox 1983). This mechanism
may be at the origin of the low efficiency of SF in the ISM (see, e.g., Evans 1991). Finally, note that clouds in
the simulations have strong internal velocity fluctuations arising either from the turbulent velocities that formed
them and/or from the turbulence generated by SF. Quiescent, bullet-like clouds do not exist in our simulations,
as also pointed out for real clouds by Falgarone & Pérault (1988).

Concerning the efficiency of energy injection by the stars, it was estimated in Paper I that ~ 0.05 % of
the energy injected by stars ends up as turbulent kinetic energy of the flow. Under these conditions, a self-
sustaining cycle sets in, in which turbulence induces SF through density fluctuations, and in turn, SF feeds the
turbulence. Unfortunately, these results cannot be considered conclusive evidence that stellar energy injection is
sufficient to maintain the global turbulence, since the stability of the cycle depends on the adjustable parameter
pe. However, realistic massive-star formation rates are observed in the model (~ 10~* OB stars kpc~2 yr~!),
suggesting that the result is feasible.

In summary, three mechanisms of cloud formation appear to be dominant in the simulations: intermediate-
scale clouds form mainly by turbulent density fluctuations at the interfaces of colliding gas streams; small-
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Fig. 3. Time integral of the star formation rate for various runs as a function of the initial value of the uniform
component of the magnetic field B,. At small B,, SF is inhibited because B, is small enough not to counteract
magnetic braking, but is able to prevent radial collapse of sheared condensations. Intermediate values of B,
counteract magnetic braking and thus promote SF. Very large values of B, inhibit SF because the magnetic
field makes the medium more rigid.

scale clouds can form by either the same mechanism or from fragmentation of expanding shells around SF
sites. Finally, the largest cloud complexes form through turbulent merging of intermediate clouds, driven by
gravitational instability. Thus, the role of turbulence in the life cycle of clouds appears to be twofold: small-scale
(with respect to the cloud’s size) turbulent modes contribute to cloud support, while large-scale modes provide
either cloud-forming or cloud-disrupting mechanisms. However, an important caveat must be mentioned here:
the simulations clearly do not have turbulent modes at scales larger than the largest clouds. The effects of these
modes on the kpc-sized clouds is thus not represented, even though they could drastically affect the conclusions
based on small-scale turbulence. In that context, simulations of the entire galactic disk would be necessary.

4. MAGNETIC EFFECTS
4.1. Effects of the Magnetic Field on Cloud and Star Formation

A linear instability analysis for the galactic disk including an azimuthal magnetic field has been carried out
by Elmegreen (1991, 1994). The corresponding analysis for the two-dimensional system of our simulations
is given in Paper II. In the absence of shear, a weak magnetic field stabilizes the medium by opposing
collapse of radial perturbations, while a strong field is destabilizing by preventing Coriolis spin-up of azimuthal
perturbations (magnetic braking). Since realistic perturbations should have both radial and azimuthal
components, the shear-less magnetic case is always unstable. In the presence of sufficiently strong shear,
the field becomes stabilizing again, as azimuthal perturbations are sheared into the radial direction before they
have time to collapse.

In the turbulent regime, the cloud formation mechanisms described for the non-magnetic cases continue
to hold, although somewhat modified by the magnetic field by criteria similar to those obtained from the
instability analysis. Indeed, in Paper II it was found that fully turbulent simulations exhibit varying degrees of
compressibility and SF as the initial uniform azimuthal component of the field B, is increased. This effect is
shown in Figure 3, which gives the time-integral of the SFR for various runs with progressively higher values
of B,. Moderate values are seen to decrease the overall SFR, while larger values are seen to increase it.
Interestingly, saturation at very large B, appears to occur, which can be interpreted as a global “rigidization”
of the medium by the field. In fact, “H II regions” in the simulations do not expand nearly as much in the
presence of B, as they do in non-magnetic cases. This “pressure cooker” effect is similar to the results of Slavin
& Cox (1993) for the expansion of SN remnants in the presence of magnetic fields. In fact, in the simulations,
this cloud-confining effect of the magnetic field is as notorious as its cloud-supporting effect.

An unexpected effect of the uniform field component is that clouds appear to be slightly more roundish

and less filamentary at larger values of B, (Figure 4), contrary to the common belief that the opposite effect
should occur. We speculate that this phenomenon is due to a combination of factors: first, the above mentioned
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Fig. 4. Contour plots of the density field at ¢ = 5.2 x 10°® yr for three runs with B, = 0,1.5 and 10 uG (left to
right), but otherwise identical. Note the tendency towards more roundish structures as B, increases.
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Fig. 5. a) (left) Evolution of the ratio of compressible to total kinetic energy for two runs with different initial
values of the fluctuating component of the field. The characteristic scale of the initial fluctuations is 1/4 the
size of the integration box. Initially the run with stronger fluctuations has larger compressibility. Due to the
inverse magnetic cascade and stellar activity, however, by ¢ ~ 1.5 x 10® yr the fluctuating magnetic energies
of the two runs are comparable, causing comparable compressibilities. b) (right) Evolution of the fluctuating
component of the magnetic energy for three runs with different initial values of the uniform component of the
field. Both the amplitude of the fluctuations and their time derivative are seen to increase with B,.

“pressure cooker” effect which does not allow shells to expand very much; second, gas motions along field
lines (when promoted by compressions as opposed to body forces like gravity), cause an increase in the field
component perpendicular to the motion, thus opposing it.

The effects of a uniform azimuthal field are to be contrasted to those of an initial small-scale fluctuating field
Brms- In this case, magnetic tension in the field lines induces small scale compressions in the flow, increasing
the global compressibility (Figure 5a) of the medium.

4.2. Effects of Star Formation on the Magnetic Field

Because stellar heating is the ultimate source of energy for the turbulence in the simulations, it has
important affects on the magnitude and topology of the magnetic field as well. One of the most important
results is that SF appears to be capable of maintaining and even increasing the total magnetic energy in
the flow by means of the compressible, non-periodic forcing it exerts. This result is all the more interesting
considering that the simulations are two-dimensional, and therefore cannot support dynamo activity.

The mechanism apparently responsible for the magnetic amplification in our simulations requires the
presence of the uniform component of the field B, (Paper II). This is exemplified in Figure 5b, which shows
the evolution of the fluctuating magnetic energy for three runs with different values of B,. Clearly, both the
amplitude of the fluctuations and their time derivative are larger at larger B,.

An interesting feature of the dynamics in the simulations is that there seems to be no single predominant
physical agent. Inasmuch as the field constrains fluid and cloud motions to some extent, the field is in turn

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995RMxAC...3...61V

g
Pl

RWKACI 2310

Loy
(=]
[=h

L

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System

STAR FORMATION IN THE ISM 67

Fig. 6. Density and magnetic fields for a 512x 512 run at t = 0.42 x 10® yr. Note the strong magnetic turbulence
inside clouds and the rather smooth character of the magnetic field in the ICM. Regions of alignment of the
magnetic field and density features can be seen, for example, in the filament in the upper right corner. However
there are also regions where the magnetic field is perpendicular to the density features such as the lower portion
of the same cloud and also the cloud near the center of the lower left quadrant.

strongly distorted by the turbulence and SF. In particular, in clouds formed by turbulent compressions, the field
exhibits a tendency towards alignment with elongated density features, as the field component perpendicular
to the compression is amplified by flux freezing. This mechanism has the further consequence that the field
is generally larger inside clouds than in the ICM by factors of ~ 4 (~ 3uG for the ICM and ~ 12pG within
clouds), with excursions up to factors ~ 10. Also, the strong turbulence within the clouds causes the field to
have strong internal fluctuations (Figure 6).

It is noteworthy that the stellar energy injection occurs at scales small compared with the size of the
system, and thus kinetic and magnetic energy transfer to larger scales is observed. Although observed here in
a two-dimensional context, it is known that in three dimensions an inverse cascade of magnetic helicity exists
(as opposed to a square magnetic potential in two dimensions), with the magnetic energy following to a lesser
extent (Pouquet, Frisch, & Léorat, 1976; Meneguzzi, Frisch, & Pouquet, 1981; Horiuchi & Sato, 1986, 1988). It
will be of great interest to determine whether the observed cascades are still maintained in three-dimensional
simulations with forcing at the small scales.

5. CONCLUSIONS

Turbulence is a major cloud-forming agent in numerical simulations of the ISM at the kpc scale (Papers I
and II). The non-magnetic simulations (Paper I) suggest that intermediate ( £ 100 pc) and small (a few tens
of pc) clouds mainly form at the interfaces of colliding flow streams. The smallest clouds can additionally form
from fragmentation of expanding shells around stellar heating centers. Large cloud complexes (several hundred
pc) appear to form from gravitational instability. However, since the medium is turbulent and contains already
sizable clouds, the formation of the large complexes proceeds through gradual merging of the clouds that is
almost imperceptible as one watches the simulation evolve, but is noticeable when comparing epochs separated
by several 107 yr.

SF injects energy into the turbulence, and the simulations indicate that a self-sustaining cycle may be
established, although the caveat exists that the simulations contain an adjustable parameter, namely the
threshold density for SF p., which controls the stability of the cycle.

The magnetic field introduces quantitative variations in these mechanisms, but does not seem to alter
them essentially, although the role of the Parker instability cannot be evaluated by the simulations, as they
neglect the vertical direction in the Galaxy. The field modulates the density contrast that can be achieved by
turbulent compressions, as well as the morphology of the clouds. In turn, the turbulent magnetic energy is also
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fed by stellar activity, provided a sizable uniform component of the field is present. The stellar energy injection
occurs at comparatively small scales, and energy cascades to larger scales. Whether this is an artifact of the
two-dimensionality of the simulations remains to be evaluated by resorting to three-dimensional computations.

In summary, the role of turbulence in the life cycle of clouds appears to be twofold: small-scale modes
contribute to cloud support, while large-scale modes can both form or disrupt clouds.

Finally, it should be pointed out that the simulations so far have not included the energy injection from
supernovae or OB winds, which can inject energy at significantly larger rates than heating from ionizing radiation
of main sequence OB stars. The largest turbulent velocity dispersion that can be imparted to the flow by stellar
heating is comparable to the thermal velocity dispersion at the temperature of our “H II regions”, ~ 10* K,
which roughly balances gravity for these complexes. In the non-magnetic case, this turbulent energy is enough
to blow the complexes apart, but not in the magnetic case because of the “pressure cooker” effect. The inclusion

of SN/wind energy should cause these clouds to be easily disrupted. Work in this direction is in progress (Gazol
et al. 1995).
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