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RESUMEN

Trabajos recientes sobre la estructura de los campos magnéticos en un
medio turbulento dan predicciones sobre las propiedades de los flujos magnéticos
tubulares como funcién del niimero de Mach y la escala de la turbulencia, y la
resistividad y viscosidad del fluido. Aqui se discuten las implicaciones de este
trabajo para los discos de acrecién. Se muestra que, a pesar de que algunos flujos
tubulares en discos de acrecién estan por lo general casi completamente evacuados,
son menos flotantes de que lo se ha sugerido previamente. También se hace notar
que el flujo magnético vertical tiende a ser eyectado de la parte externa del disco
de acrecién, asi, la evidencia de actividad magnética continua en estos sistemas
debe ser interpretada como evidencia de la existencia de actividad de dinamo.

ABSTRACT

Recent work on the structure of magnetic fields in a turbulent medium gives
predictions for the properties of the magnetic flux tubes as a function of the
Mach number and scale of the turbulence, and the resistivity and viscosity of
the fluid. Here I discuss the implications of this work for accretion disks. I show
that although accretion disk flux tubes are usually almost completely evacuated,
they are nevertheless less buoyant than previous estimates have suggested. I
also note that vertical magnetic flux tends to be ejected from the outer edge of
accretion disks, so evidence for continued magnetic activity in such systems should
be interpreted as supporting the existence of dynamo activity.

Key words: ACCRETION, ACCRETION DISKS — PLASMAS

1. INTRODUCTION

Turbulence and magnetic fields are both topics of morbid curiosity in astrophysics. In that context they
are usually seen as poorly understood, undoubtedly real phenomena that can be used as part of an explanation
of last resort, i.e., when all calculable models have been disproved. Consequently, both of these phenomena,
together and separately, have been used in constructing models of angular momentum transport in accretion
disks, another process of indisputable reality whose nature is obscure. Notwithstanding this troubled history, I
will present in this paper a summary of my recent work on magnetic fields in turbulent media and explore its
implications for accretion disks.

I have three basic reasons for pressing ahead with such an unpromising topic. First, the structure of
magnetic fields in accretion disks determines the rate at which magnetic flux is lost from the disk. This implies
that one can get a variety of rates depending on one’s model for the magnetic field structure, but it also implies
that any physically well-motivated model can have interesting, and possibly unique, implications. Second,
magnetic field instabilities represent a mechanism guaranteed to move angular momentum outward and matter
inward (Balbus & Hawley 1991), which is not true for many of the instabilities suggested as the basis for
dissipation in accretion disks. It is therefore critical to explore the nature of the turbulence resulting from these
instabilities. Third, vertical magnetic fields, entrained in accretion disks, are widely believed to be responsible
for driving violent outflows, especially jets, from a wide variety of accretion disks. The radial transport of
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vertical magnetic flux cannot be understood without examining the nature of magnetic fields in turbulent disks,
and the global structute of accretion disks fields hinges on this issue.

First I need to summarize the relevant features of accretion disks. The single most important point is that
they are luminous due to the conversion of orbital energy into heat. This implies an outward flux of angular
momentum. Such a flux would follow from the existence of some local viscosity, but it would have to be much
larger than the viscosity implied by microscopic processes. The usual solution is to invoke an effective viscosity
due to collective processes which is v = ahe,, where h is the disk height, ¢, is the sound speed, and « is
an arbitrary constant of order unity (Shakura & Sunyaev 1973). For a thin disk with no self-gravity, i.e., a
“Keplerian disk”, we have a rotational frequency Q(r) oc r~3/2, a disk height h ~ ¢,/Q, and, by definition,
h < r. In this case the differential rotation in the disk plus the assumed effective viscosity leads to an inward
flux of mass given by )

M ~ aTh?Q, (1)

and a radiative flux from the disk surface of ]
Fradiative ~ Mﬂz (2)

Attempts to model the outbursts for dwarf novae and X-ray transients have led to the conclusion that « is
probably not a constant, but a function of local conditions (Cannizzo 1994 and references therein). Assuming
that o goes as (h/r)", where n is a constant of order unity, gives a reasonable fit to the observations.

In § 2 of this paper I will summarize my recent work on the distribution of magnetic fields in a turbulent
medium. In § 3 I will discuss the implications of this work for magnetic buoyancy in disks and how this leads
to a direction connection between dynamo growth rates in disks and the appropriate value of «. In § 4 I will
draw some general conclusions and point the way towards future progress on this topic.

2. MAGNETIC FIELDS IN TURBULENT FLUIDS

The material in this section is a synopsis of Vishniac (1995a). The basic feature of this model is that the
magnetic field in a high f fluid, i.e., one in which the magnetic field pressure is small compared to other sources
of pressure, is spatially intermittent. Most of the magnetic flux is contained in flux tubes, whose radii are much
smaller than the scale of curvature for the field. This is not a novel suggestion. In fact, it is about what one
would guess from examining the magnetic field in the photosphere of the Sun. It does raise the question of how
such flux tubes form. Why should the magnetic field and the gas spontaneously separate from one another?
The mechanism I have proposed is a process I call turbulent pumping. If we consider an isolated flux tube in
a turbulent medium, then as long as the flux tube is flexible enough to respond to the hydrodynamic forces

exerted by the surrounding fluid then it will undergo stretching at a rate roughly equal to the shearing rate on_

the scale of curvature of the flux tube. This lowers the linear density of matter in the flux tube at the same
rate. By the time the flux tube length has doubled it will be twisted by the surrounding flow in such a way
that it will intersect itself, or a whole set of neighboring flux tubes. This will result in the formation of a set
of closed loops which will shrink down to dissipative scales and vanish, thereby maintaining a constant flux
tube length in the turbulent fluid. In this way matter is removed from the magnetic flux tubes at a rate which
is dependent only on the properties of the turbulent medium and not at all on the specific resistivity of the
fluid. In a stationary state this loss of matter from the flux tubes is balanced by ohmic diffusion of the charged
particles onto the field lines, a process which becomes extremely slow as the conductivity of the fluid increases
to astronomical values. The consequence is the appearance of flux tubes whose internal gas density can be far
below that of the surrounding fluid. In the Sun, flux tubes will be largely evacuated only near the top of the

solar convection zone, whereas in accretion disks flux tubes will be almost empty whenever the disks are largely
ionized.

This process of turbulent pumping depends on several conditions. First, there can be little or no turbulent
diffusion of matter into the flux tubes. Otherwise the mismatch between the mass loss driven by collective
processes (flux tube stretching and the creation of closed loops) and mass loading driven by ohmic diffusion will
disappear. Preliminary work indicates that this condition will be satisfied whenever the Alfvén speed in the
flux tubes is significantly greater than the turbulent velocity outside. In other words, this condition is satisfied
self-consistently when turbulent pumping is effective. The transition from a diffuse field to one contained in flux
tubes is not yet understood. Second, reconnection must be efficient, in the sense of allowing the magnetic field to
rearrange its topology in less than an eddy turn over time. Once again, this condition is met self-consistently in
the flux tube model. This result assumes the Sweet-Parker rate for reconnection, which is generally considered
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to be the slowest reasonable estimate for reconnection rates. Third, turbulent pumping relies on the notion that
closed loops whose radii are less than a typical eddy size will tend to shrink to dissipative scales quickly, thereby
unloading their entrained mass into the surrounding plasma. This also follows from the physics implicit in the
flux tube description of the magnetic field, although the loops tend to shred as they shrink, thereby creating a
more diffuse, but weaker and less organized, component to the magnetic field.

What does this pumping lead to? If the resistivity is large enough that particles can diffuse to the center
of a flux tube in less than one eddy turnover time, then the flux tube radius is

n 1/2
Ty R (k—w) , (3)

where 7 is the resistivity, V; is the turbulent velocity on the scale | on which the flux tubes are bent, and k is
the corresponding wavenumber, k¥ = 27 /l. In this limit the magnetic pressure in a flux tube has a Gaussian
profile. When the resistivity is sufficiently small, the flux tubes will become largely empty, i.e., the magnetic
field inside the flux tube, B, is given by

Bt _

. 8T

where P is the pressure of the surrounding fluid. In this limit each flux tube will have a skin depth of width
(n/kWVi)'/2 surrounding a hollow core.

None of this tells us to how decide what r; or I should be in a given situation. For this we need to understand
the forces between flux tubes, since these forces will determine the distribution of flux elements in the turbulent
fluid. Since in this picture the magnetic flux is confined to the interiors of the flux tubes, the forces between
them will be hydrodynamic and stem from the turbulent wakes created as the fluid moves past the semi-rigid
flux tubes. The most obvious effect (cf. Parker 1979 §8.9) is the attraction between flux tubes when one lies
downstream from the other. This is simply due to the fact that the downstream flux tube feels a reduced
turbulent drag since the momentum flux around it is reduced by pVj?r;/w(r), where p is the fluid density, Vi
is the fluid velocity relative to the flux tubes, r; is the typical flux tube radius, and w(r) is the width of the
turbulent wake at a distance r downstream from the leading flux tube. This attraction is analogous to mock
gravity, in that it stems from the ability of neighboring tubes to block statistically isotropic repulsive forces in
the environment. It is less well known that one expects neighboring flux tubes, whose separation is more or
less perpendicular to the ambient flow, to repel one another. This is known experimentally (Zdravkovich 1977;
Gu et al. 1993) since no adequate analytical treatment of the near-field turbulent flow is available. Unlike the
shielding effect, this repulsion depends critically on the nature of the flux tube wakes.” When the wakes are
purely laminar and stable there is an attractive force, which is the basis for previous claims that flux tubes
embedded in a turbulent flow always attract one another (Parker 1979 §8.9). The transition to an unstable
wake, capable of producing repulsion, occurs when

P, (4)

m27&'3; (5)
v

in other words, when the Reynolds number on the scale of the fluz tube radius exceeds a critical value which
lies in the range of 30 to 40. When this criterion is not satisfied, flux tubes will aggregate. At higher Reynolds
numbers the magnetic field will be broadly distributed through the fluid in the form of discrete flux tubes that
maintain their separate identities through a rough equilibrium between attractive and repulsive interactions.
This qualitative difference is significant, since this criterion is almost always satisfied in astrophysical objects,
and not (yet) satisfied in numerical simulations.

Neglecting viscosity, which is reasonable in stars and accretion disks, I have used these points to construct
a simple model of the magnetic field structure in a turbulent conducting fluid. A detailed discussion is given
in Vishniac (1995a). Here I simply quote the relevant results. First, if the magnetic field energy density is
comparable to, or less than, the turbulent energy density, there exists some scale [ such that

B} V2
Tt ~ p_I.
Tt

(6)

The left hand side of this equation is the force per volume in the flux tube exerted by magnetic tension. The
right hand side is the force per volume exerted by turbulent drag from the ambient fluid. Their rough equality
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defines the scale ! as the scale of curvature for a typical flux tube. In typical turbulent cascade, V;?[ is a sharply
increasing function of 1. Consequently, on scales larger than [ the magnetic field is almost passively advected.
On smaller scales the flux tubes are almost rigid.

Second, in order to balance the time-averaged attractive and repulsive forces between flux tubes, it is
necessary to suppose that on all scales less than [, the number of flux tubes, N,, within a radius r of a given
flux tube, satisfies the condition

N,- rye~"T. (7)

This defines a fractal distribution of dimension one which extends from the flux tube radius up to the scale [.

I can combine these results to get an expression for the average magnetic field energy density. This average
is well-defined only on scales larger than {. On that scale I obtain

2
(8% ~ NiB? (), (®)
or r.
(B*) ~ B} 1. 9)
Combining this with equation (6) I obtain
(B%) ~ oW’ (10)

In other words, the scale of curvature for the flux tubes is the scale of equipartition between the mean square
magnetic field and the average turbulent energy density.

3. BUOYANCY AND DYNAMOS IN DISKS

Given this specific model for the structure of a magnetic field in a turbulent medium, it is possible to
discuss the systematic motion of a magnetic field in an accretion disk. I begin by noting that the rate at which
a flux tube will rise due to buoyant forces is given by the balance between turbulent drag and the buoyant
acceleration. For a flux tube this gives

Ap(rri)g ~ pVyViry, (11)

where Ap is the density deficit inside the flux tube, g is the local gravitational acceleration, and V} is the buoyant
velocity. The left hand side of this equation is the buoyant force per unit length. The right hand side is the
turbulent drag, assuming that V3 < V. In what follows I will assume that the magnetic field is in equipartition
with the turbulence and write Vr instead of V;. Assuming that the flux tube is small enough to be in good
thermal contact with the surrounding medium, which is usually reasonable, the fractional density deficit Ap/p
is roughly the ratio of the magnetic pressure in the flux tube to the ambient pressure. This implies that

BZ
(255) ewrtra ~ p¥avirs, (12)
or I
Py T
V (F) LnVr ~ TV, (13)

where [, is the local pressure scale height and I have used the condition that the radius of curvature of the
magnetic field lines is Ly. Note that if the magnetic field energy is below equipartition then I need to replace
LtV with the appropriate [V}, implying a slower buoyant rise. For stellar convective turbulence, I, ~ LT and
magnetic flux will rise at a substantial fraction of the local turbulent velocity once the magnetic field reaches
equipartition with the turbulence.

This result cannot be extended to accretion disks. In accretion disks the most plausible source of turbulence
is magnetic field instability, first described by Velikhov (1959) (see also Chandrasekhar 1961) and applied to
accretion disks by Balbus & Hawley (1991). I invoke here the description of the saturated state of this instability
for a large-scale azimuthal field embedded in an accretion disk (Vishniac & Diamond 1992). The dominant eddies
will be those characterizing the fastest growing mode, for reasons explained in that paper. The instability will
saturate in a turbulent state characterized by a typical turbulent velocity comparable to the Alfvén speed,
i.e. Vp ~ V4. The eddy size will be Ly ~ V4 /Q, where € is the local rotational frequency. This gives rise
to an effective viscosity and diffusion coefficient of order Ly Vr ~ V2/Q or (Va/cs)2h?Q, where h is the disk
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thickness and I have used the relationship ¢; ~ h{2, which applies to thin, non-self- grav1tat1ng accretion disks.
The dimensionless viscosity of the disk, due to magnetic field stresses, is just (Va/cs)2.

What does this imply about flux tubes in accretion disks? It can be shown (Vishniac 1995b) that flux
tubes in hot disks are in the ideal fluid regime, i.e. they are almost completely empty. In this case

3
r¢ ~ Lp (VT> (ﬁ> h ~ o3/2h. (14)

Cs Cs

The buoyant velocity is

~ YA e 1
A~ oo (15)

2
Vi ~ ﬂVT ~Yaly, Vi
I, 3

Since the loss rate for magnetic flux is just V3 /h ~ a2, this implies that the azimuthal magnetic field escapes
from the disk at a rate which is comparable to the thermal relaxation rate for an optically thick disk. I note in
passing that this flux loss rate is smaller, by a factor of V4 /c;, than estimates based on the Parker instability,
which is normally taken to imply a buoyant velocity ~ V4. The reason for this discrepancy is that the Parker
instability is strongly suppressed by the Balbus-Hawley instability (Vishniac & Diamond 1992). In a stationary
state the magnetic field must be regenerated by some dynamo process so that the dynamo growth rate balances
the buoyant flux losses, i.e.

Vi
rdynamo ~ _hz ~ afl, (16)
or I
~ dynamo 17
o~ —ET (17)

When radiation pressure is large and electron scattering dominates the opacity, a situation normally
encountered in the inner regions of AGN disks, the flux tube properties change significantly. In this case
the magnetic pressure in the flux tubes is limited by the ambient gas pressure, since the ambient photons can
diffuse into the flux tubes on a very short time scale. This does not affect the efficiency of turbulent pumping,
with the consequence that the flux tubes are larger than one would expect in the ideal fluid regime but are still
evacuated. This gives a modified expression for the flux tube radius, i.e.

143 )2 (VA)" P a2
! T (cs,gas Cs Pgas Pgas ( )
This leads to an enhanced buoyancy so that
pV:I?LT) 1 P
Vi ~ —~ ac,. 19
’ g ( Pgas Vr Pgas : ( )

Consequently, for a given dynamo growth rate, balancing magnetic flux generation with buoyant losses I get

an~ (F“”g"'"") (P j;) : (20)

In other words, as long as the dynamo growth rate is independent of the magnetic energy density, the implied
disk viscosity will scale with the gas pressure rather than the total pressure. Of course, this may imply that
other angular momentum transport mechanisms, normally dominated by magnetic stresses, become important.

What are some possible disk dynamos? The equilibrium state of the azimuthal magnetic field is determined
by the balance between dynamo activity and vertical buoyancy. However, one can also imagine that a typical
accretion disk will have a large-scale vertical magnetic field, if for no other reason than the fact that such a
field is likely to be accreted along with matter added to the outer edge of the disk. Clearly vertical buoyancy
is irrelevant to the evolution of this field. Moreover, since the field lines cross the disk in concentrated flux
tubes and spread out above and below the disk, the tension due to strong bending of the external field lines
is negligible. Nevertheless, there are two effects which will tend to move vertical field lines outward. First, if
the field lines are bent radially by some total angle 20 as they cross the disk, then turbulent diffusion through
the disk will tend to combine radial field lines of opposite polarity, moving the point at which the field lines
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cross the disk outward, at a rate of roughly ac, tand (Van Ballegooijen 1989). If the magnetic field curvature
is determined only by'large scale stresses than § ~ h/r and this velocity is comparable to the inward flow of
matter in the disk. Consequently it will be difficult to determine the direction of drift for the magnetic field. Of
course, if the concentration of magnetic field in the inner disk increases, then the global stresses will increase
and the disk will stop accreting vertical flux regardless. In addition, if the field is responsible for driving a wind

or jet (cf. Shu et al. 1994 and references therein) then it will tend to bend sharply near the disk which will
move the field outward.

Second, the flux tubes containing the vertical flux will be subjected to radial buoyancy forces (Park &
Vishniac 1995). Each flux tube will have an associated energy due to its displacement of matter and associated
pressure. This energy has two (usually) comparable parts. The first is due to the surrounding pressure and
is roughly equal to APLxr?, where L is the length of the flux tube, and AP the pressure contributed by the
magnetic field in the flux tube. The other is due to the displacement of matter which could otherwise settle to
the disk midplane. This term is of order Ap(hQ)2Lxr?, where Ap is the density deficit in the flux tube and is
of order p under normal circumstances in a hot disk. For a gas-pressure-dominated disk the two are comparable
and roughly equal to B?r?L. For a radiation pressure dominated disk the gravitational term dominates and is
larger by a factor of P/P,;,,. One would get the same effect by replacing the AP in the pressure contribution
with P rather than Pg,,. If the energy associated with a flux tube is U;, then the consequent radial drift velocity
is obtained by equating the turbulent drag with the radial gradient of U;, or

pVeVire ~ =30t _pr2a (im0, (21)
Consequently,
Vs ~ —acsh——,(InUy), (22)
gas

which for 8,(In U;) ~ r—1, implies a radial drift velocity which is larger than the inward accretion velocity by
a factor of P/P,,s. The direction of the drift depends on the sign of d,(InU;). Since a single flux tube can
break apart, or combine, in the course of its radial drift, we need to evaluate this derivative under the constraint

that the magnetic flux remains fixed, or that the area goes as Pglﬁ . The length of the flux tube will exceed h,
since each tube actually crosses the disk in a random walk. We will assume that L o ha~1/2. Subject to these

constraints we find that
Vo ~ —acgh P la, (PMCS) (23)

Pyas 2 Py

If M is constant, this will almost give a strong outward buoyancy to the flux tubes, which will clearly dominate
over accretion when P 3> Pyqs. In the event that the inner disk is unstable and M varies with 7, there will still

be a averaged outward flow. The evidence for magnetic activity in accretion disks, especially in AGN, must be
read as evidence for large scale dynamo activity in these disks.

What are the prospects for a reasonable theory of dynamo activity in disks? There is an extensive literature
on this topic, too extensive to summarize here. My own view is that there are only a few processes which we can
be reasonably sure exist and which may dominate in real accretion disks. All of them rely on the notion that
shearing of a radial field provides for efficient generation of a large scale azimuthal field. The tricky step is to
understand how the azimuthal field component regenerates the radial field. One of the most popular notions is
that magnetic buoyancy produces turbulent motions with a preferred helicity, which close the cycle by twisting
the azimuthal field lines into radial field lines (Galeev, Rosner, & Vaiana 1979). However, this relies on using the
Parker instability, which has a large azimuthal wavenumber. Since modes with a large kg and a slow growth rate
will be suppressed by the Balbus-Hawley instability, this mode is not expected to exist in real accretion disks
(Vishniac & Diamond 1992), nor is it seen in numerical simulations (Brandenburg et al. 1995). Another idea is
that internal waves, excited near the outer edge of the disk via tidal forcing (Goodman 1993), will fill the disk
and drive a dynamo with a growth rate ~ (H/r)3/2 (Vishniac, Jin, & Diamond 1990, Vishniac & Diamond 1992).
This implies a dimensionless viscosity of ~ (H/r)3/2(P,4s/P). Finally, Balbus & Hawley (1991) have claimed
that the Balbus-Hawley instability will lead to a local turbulent dynamo which will saturate near equipartition
between the field and ambient pressure, leading to an « of order unity. Something like this is seen in numerical
simulations (e.g., Brandenburg et al. 1995), although it would appear to be inconsistent with phenomenological
work on accretion disks (cf. Cannizzo 1994 and references therein). On the other hand, the numerical results
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are also consistent with the idea that the Balbus-Hawley instability is driving an incoherent dynamo according
to mean field theory, leading to a saturation which depends on the geometry of the computa.tlonal box (Vishniac
& Brandenburg 1995). This theory predicts an effective a of order (H/ r)z(Pga,/ P)%. The steeper scaling with
H/r and strong suppression in radiation pressure dominated environments implies that while this process may

. play a role in real disks, it will only dominate in disks not subject to significant elliptical distortions at large

radii and free of signiﬁcant radiation pressure.
4. CONCLUSIONS AND FUTURE PROSPECTS

I can summarize my results as follows. First, I have proposed a simple model of flux tube formation that
is consistent with solar observations. Second, in this picture there is a failure of “fux-freezing” to adequately
describe the macroscopic motions of the field and fluid. In general there will be some significant relative
motion between the flux tubes and the fluid. This suggests the possibility of mean-field dynamos. Third, direct
numerical simulation of astrophysically realistic driven MHD turbulence is not currently possible. Turbulence
driven by magnetic field instabilities can be simulated to obtain qualitative results, but such simulations will be
quantitatively unreliable. Fourth, accretion disks might be able to move magnetic field lines inward, but only if
their radial bending angle across the disk is of order h/r or less. Even in this case, radial buoyancy may move
them outward. Fifth, magnetic viscosity in AGN disks couples primarily to gas pressure, not radiation pressure.
This may imply that the viscosity due to hydrodynamic effects, e.g., internal wave breaking, dominates. Finally,
given the relatively high rate of vertical and radial buoyant magnetic flux losses, evidence for continued magnetic
activity in disks (and stars) can only be explained by the presence of some dynamo mechanism.

It is somewhat disappointing that the MHD turbulence model used here implies that numerical simulations
of astrophysical turbulence are not physically realistic. Fortunately, this same theory does predict scaling
behavior and approximate saturation values for magnetic fields in the viscous regime, which is currently
accessible to numerical simulations. Somewhat fragmentary results from current work seem to show the predicted
behavior of the magnetic field as a function of Reynolds number (Vishniac 1995a). Future tests of the theory in
this regime should give us some confidence in its application to astrophysics, or allow us to discard it in favor
of some alternative description. However, until we are in position to do more realistic MHD simulations, it will
not be possible to replace the approximate results sketched here with more quantitative estimates.
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