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RESUMEN

La teoria de enfriamiento de las estrellas compactas es revisada usando la ley
de Cattaneo para el flujo de calor. Este formalismo predice cambios en la ecuacién
de transporte de energia, insinua pulsos cuasiperiédicos en la luminosidad y que la
energia es propagada por ondas térmicas modificando el tiempo de enfriamiento.
Se sugieren aplicaciones en el estudio de las variaciones rapidas de luminosidad en
enanas blancas y en la de emisién de pulsos por estrellas neutrénicas.

ABSTRACT

Compact star cooling theory is revised using the Cattaneo law for the heat
flux. It is shown changes in the energy transport equation, insinuates quasiperi-
odic pulses in the luminosity and predicts that the energy is spread by heat waves
changing the cooling time. Applications in rapid variations in single white-dwarf
oscillators and quasi periodic luminosity pulses of neutron stars are suggested.
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1. INTRODUCTION

Cooling of white dwarfs (WDs) and neutron stars is determined by the rate of energy flow through internal
layers. In general the possibility of heat wave propagation is obviated, a simplification that can be spurious in
degenerate material where relaxation is not necessarily negligible. This article describes the cooling time and
luminosity in WD and NS stars when heat waves are considered, replacing the Maxwell-Fourier equation by
the Cattaneo causal law in the energy transport equation (§2). An outline of cooling theory of NS and WDs is
presented in §3, with a short discussion of astrophysical applications in the conclusions.

2. THE CATTANEO LAW AND THE ENERGY TRANSPORT EQUATION

In energy transport theory the temperature gradient is given in terms of local values of opacity «, density p
and energy flux F' by (Shapiro & Teukolsky 1983, ST83) dI'/dr = — (3kp/4acT) F , where a is the radiation-
density constant and ¢ the speed of light. This is the Fourier-Maxwell law for energy flux due to thermal
conductivity and/or radiative diffusion, F(f, t) = —kVT(Z,t), which leads to a parabolic equation for T,
according to which perturbations propagate with infinite speed (Joseph & Preziosi 1989). The origin of this
non-causal behavior is the implicit assumption that the energy flux appears at the same time as the temperature
gradient. Neglecting the relaxation time, 7, is, in general, a sensible thing to do because for most materials 7
is very small (~ 107! s for phonon-electron interactions and ~ 10713 s for phonon-phonon and free electron
interactions, at room temperature). There are, however, situations where 7 may not be negligible: for superfluid
Hell,at T ~1—2°K, 7 ~ 1073 s, and in NS interiors 7 ~ 102 s for T' ~ 108 °K (Herrera & Falcén 1995). The
proper heat flux equation, which leads to a hyperbolic equation, is the Cattaneo law (Joseph & Preziosi 1989):

K

t
F(@,t) = - / e~ T(Z ) dt . (1)
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3. COOLING OF NEUTRON STARS AND WHITE DWARFS

Following ST83, and using VI' ~ DT/R = (Tcenter — Tsurroundings)/ R, the total luminosity L = —47R?F,
is given by L = C,, (d(DT)/dt) = —(4nRk/T) ffoo DT.exp[—(t —t')/7]dt’'. This can be Laplace transformed
to lead to: L = [4mRk DT(0) exp (—t/7)] f(z,w) = Lof(z,w), with £ = ¢/27 and w = y/47/€ — 1 and where

fz,w) (5 + w?) cos(wz) — (3—::0—) sin(wx)] exp [g (w? — 1)] ) (2)

T2+l

Eq. (2) relates the standard luminosity, Lo, (without heat waves) and the “true” luminosity (in presence of heat
waves). For a NS of mass ratio N = M/Mg, density p and internal temperature Ty (in units of 10° °K), the
total thermal energy is U = 6 x 1047 N (p/ppuc)?/® T2 = ATZ . The luminosity in eq. (2) is time dependent and
the cooling time is defined as e-folding time through the cooling equation 7, = A [T?(fi) — DT?(0)] / < L >
where < L > is the time-averaged luminosity. For oscillatory funtions < L > is very different to Lg. The
cooling time might be larger or smaller than the usual cooling time depending on the relaxation time and
specific heat.

Simple radiative models of WDs ignore convection completely. If the core is degenerate (or with layers
superfluid He) then 7 might not be negligible and the WD luminosity can admit quasi-periodic variations on
time-scales smaller than 7. Using the convection theory for the energy transport in Cattaneo’s régime, one
finds that the luminosity has the form of equation (2) (Herrera & Falcén 1995). The condition of hidrostatic
equilibrium becomes dT/dP = (3x/64nc)(1/GM T3) (1(8L/8t) + L) . Note that for the “classical” equations
of energy transport, the presence of a sub-surface convection zone can highly affect the WD rate cooling and
its age. According to our energy transport equation, the WD cooling time is given by (Falcén 1997):

i T T Of(z,w) -t 2 (Mg _5/
N e ) IS (o s ©)

When 7 — 0 the cooling time has the expression found in the literature; introducing heat waves it increases.

4. CONCLUSIONS

The superfluid interior of NS facilitates the propagation of heat waves making the luminosity dependent on
the time behaviour of the temperature gradient and on the envelope composition, affecting the cooling time,
depending on the values assumed for relaxation time and specific heat. On the other hand, “the lattice nuclei in
the crust leads to an increase in the calculated neutronic specific heat” (Lazzari & De Blazio 1997). Although
beyond the scope of this work, it is pertinent to ask to what extent those estimates would change if a Cattaneo
equation is used. The relaxation time for WD and quasi-periodic variation of luminosity could model the rapid
variation of single WD oscillation (and/or ZZ Ceti stars) because the typical period for well studied variable
WD are a few hundred seconds and the observed oscillations can not be acoustic, but may be due to a second
sound model (heat waves in superfluids). Research in this way will be undertaken. In the special (critical) case
of the cooling time, indicates that the age of WD will be two times greater, when the causal propagation of heat
is considerated. Also the WD cooling time (coolest objects) is very sensitive to luminosity and this can charge
the results for the oldest stellar ages and the galactic disk. However, useless to go deeper into the explanation
of these fluctuations until uncertainties pertaining the numerical values of relaxation time is dissipated.
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