Abstract
As part of our spectroscopic survey of planetary nebulae with [WC] nuclei (Peña et al. 2001), low- and high-resolution spectra of the planetary nebulae HuDo 1 (PNG 060.4+01.5, PM1-310) and HuBi 1 (PNG 012.2+04.9, PM1-188) were secured and analyzed. Both objects are ionized by very late [WC] central stars. We found that the objects belong to the galactic disk, with heliocentric radial velocities of -12 km s
-1 (HuDo 1) and 57 km s
-1 (HuBi1). Both objects are heavily extinguished showing a logarithmic reddening, c(Hβ), of 2.04 for HuDo 1 and 1.22 for HuBi 1. Our data cover a wide wavelength range; therefore we obtained several plasma line ratios to estimate physical conditions and abundances. The derived electron temperature and density for HuBi 1 are 9,400±1,500 K and 800 cm
-3. This density is very low for a nebula around a [WC]-late star. HuDo 1 has N
e = 3300 cm
-3. We find log(O/H)+12 = 8.43 and 8.57, and N/O = 0.2 and 0.1 for HuDo 1 and HuBi 1 respectively, typical of disk PNe. Intense nebular He I recombination lines are detected for HuBi 1, this being the only PN excited by a very late [WC] star showing such an emission. The He
+ abundance derived for HuBi 1 is 0.11, which is indicating a large He enhancement in HuBi 1.
>From the analysis of the stellar emission lines a [WC 10] spectral type is derived for both stars. This is consistent with a stellar temperature of about 30,000 K, although the HuBi 1 central star should be slightly hotter for providing the large amount of He
0 ionizing photons required to explain the nebular He I lines. Nebular and stellar parameters of HuDo 1 and HuBi 1 can be compared with those of other [WC 10] objects, such as M 4-18, He 2-113 and CPD-56
08031. >From this, we can conclude that, in spite of the fact that all the objects have the same spectral type, the central stars of HuDo 1 and HuBi 1 should be intrinsically fainter, and consequently of lower mass. This is an additional evidence showing that stars of different masses can go through the same WR stage.