Abstract
Through the interaction of the solar system with the interstellar medium we can learn about shocks and magnetized winds. Voyager 1 crossed, in Dec 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ≈ 60(°) - 90{°} from the galactic plane. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction.