Abstract
We have analyzed the kinematics of emission of the planetary nebula NGC 7009 from long slit spectroscopy from the UVES spectrograph at the VLT of ESO. In particular we are interested in comparing lines excited by recombination and collisions with electrons to determine whether similarities or differences could be useful in elucidating the well-known abundance discrepancy derived from them. We construct position-velocity maps for recombination, fluorescence, charge transfer, and collisionally excited lines.We find a plasma component emitting in the C II, N II, O II, and Ne II recombination lines whose kinematics are discrepant: they are incompatible with the ionization structure derived from all other evidence and the kinematics derived from all of these lines are unexpectedly very similar. We found direct evidence for a recombination contribution to [N II] λ5755. Once taken into account, the electron temperatures from [N II], [O III], and [Ne III] agree at a given position and velocity. The electron densities derived from [O II] and [Ar IV] are consistent with direct imaging and the distribution of hydrogen emission. The kinematics of the C II, N II, O II, and Ne II lines does not coincide with the kinematics of the [O III] and [Ne III] forbidden emission, indicating that there is an additional plasma component to the recombination emission that arises from a different volume from that giving rise to the forbidden emission from the parent ions within NGC 7009. Thus, the chemical abundances derived from either type of line are correct only for the plasma component from which they arise. Apart from [N II] λ5755, we find no anomaly with the forbidden lines usually used to determine chemical abundances in ionized nebulae, so the abundances derived from them should be reliable for the medium from which they arise.