PDF
PDF

How to Cite

Infrared accretion disc mapping of the dwarf nova V2051 Ophiuchi in outburst and in quiescence. (2014). Revista Mexicana De Astrofísica Y Astronomía Serie De Conferencias, 44(1), 170-171. https://astronomia.unam.mx/journals/rmxac/article/view/2014rmxac..44..170w
hola

Abstract

Dwarf novae are compact binaries where a late-type star (the secondary) fills its Roche lobe and transfers matter to a companion white dwarf (the primary) via an accretion disc. They show outbursts which recur on timescales of weeks to years, where the accretion disc brightens by factors 20 to 100 either due to a thermal-viscous instability in the disc (DI model) or to a burst of enhanced mass-transfer from the secondary (MTI model). We report time-series of fast photometry of the dwarf nova V2051 Oph in the J and H bands, obtained with the CAMIV at the 1.6 m telescope of Observatório Pico dos Dias/Brazil, during the decline of an outburst in 2005 June, and in 2008 when the object was in quiescence. We modeled the ellipsoidal variations caused by the secondary to infer its contribution to the J and H fluxes, and fitted stellar atmosphere models to find a photometric parallatic distance of d = (111± 14)pc. Front-back brightness asymmetries in J and H-band eclipse maps along the decline from the 2005 outburst suggest that the accretion disc had a non-negligible opening angle which decreased as the disc cooled down. The time evolution of the disc radial temperature distribution along the outburst decline shows a cooling wave which accelerates as is travels inwards - in contradiction to a basic prediction from the DI model.