Abstract
Runaway stars have high spatial velocities, V > 30 km s^{-1}, and if the are massive, can produce bowshocks in the surrounding ISM. These bowshocks develop as arc-shaped structures pointing in the same direction as the supersonic stellar velocity. The piled-up shocked matter emits thermal radiation. Additionally, a population of locally accelerated relativistic particles can produce non-thermal emission over a wide range of energies. This has been recently confirmed by a bunch of observations at radio, X-ray and even gamma-ray wavelengths. Runaway early-type stars might be variable gamma-ray sources, with variability time scales depending on the scales of density inhomogeneities in the medium and the stellar velocity. Protons can easily escape from the emitting region without much loss on energy. These protons might diffuse in the surrounding molecular cloud interacting with the matter via p-p inelastic collisions. These yield gamma rays and secondary particles. Molecular clouds illuminated by these relativistic particles might become into diffuse non-thermal sources. We calculate all relevant non-thermal processes related to these stellar objects and discuss the observational prospects.