PDF
PDF

How to Cite

Properties of Galaxy Groups Selected from Chandra X-ray Observations of the Boötes Field. (2014). Revista Mexicana De Astrofísica Y Astronomía Serie De Conferencias, 44(1), 199-199. https://astronomia.unam.mx/journals/rmxac/article/view/2014rmxac..44..199v
hola

Abstract

Galaxy groups are not simply scaled down versions of rich clusters (e.g. Mulchaey 2000, Voit 2005). Due to a group's shallow gravitational potential, feedback processes play an important role in the group's evolution. It is important to understand galaxy groups since, in hierarchical clustering, they are the building blocks of large scale structure. Thus, in addition to determining the characteristics of groups, it is important to determine the mass function over the range that includes poor clusters and groups. We present the properties of the galaxy groups selected in the Chandra X-Boötes survey (Kenter et al. 2005). Group redshifts are measured from the AGES (Kochanek et al. 2012) spectroscopic data. We use photometric data from the NOAO Deep Wide Field Survey (NDWFS) (Jannuzi & Dey 1999) to estimate the group richness (N_{gals}) and the optical luminosity (L_{opt}). Our final sample comprises 32 systems at z < 0.80, with 14 below z = 0.35. For these systems we estimate velocity dispersions (σ_{gr}) and perform a virial analysis to obtain the radius (R_{200} and R_{500}) and mass (M_{200} and M_{500}) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L_{X}). We examine the performance of the group properties σ_{gr}, L_{opt} and L_{X}, as proxies for the group mass. Understanding how these observables measure the total mass is important to estimate how well the cluster/group mass function is determined. By extending the mass function to the group regime, we predict the number of groups that new X-ray surveys, eROSITA, will detect.