Abstract
Using the {Pools et al. (1995)} version of the STARS code with updated numerical tables for neutrino plasmon decay ({Kantor et al. 2007}), along with the reinterpretation of the Reimers mass-loss prescription by {Schröder et al. (2005)}, we analyze the consequences of enhanced neutrino emission on the internal structure and late evolution of the degenerated cores in low-mass stars, the non-standard increase in tip-RGB luminosity and the impact on the calibration of the Reimers mass-loss mechanism and the changes driven in post-RGB phases. With synthetic spectra generated with the PHOENIX code {Baron & Hauschildt et al. (1997)}, we also study the dependence of the non-standard increase in brightness on the selected NIR photometric band. By comparing our stellar evolutionary models with the synthetic spectra and the photometric data base of ω-Cen by {Sollima et al. (2004)}, we find the limit value μ_{ν}≤ 2.2× 10^{-12}μ_{B}.