Resumen

Among the stellar populations of the Galactic halo there is a class of stars known as carbon-enhanced metal-poor (CEMP) stars. These are metal-poor ([Fe/H] < 1.0) stars whose atmospheres exhibit large overabundances of carbon ([C/Fe] ≥ +0.7). The frequency of these stars increases with decreasing metallicity, and so by studying their abundance patterns, one can begin to uncover details of the origins of the elements. There exist a number of different classes of CEMP stars (Beers & Christlieb 2005) with specific abundance characteristics; one of them is the CEMP-s class, which exhibit evidence of s-process element enrichment, widely believed to be resultant of mass transfer from a companion low-metallicity asymptotic giant branch (AGB) star, where the production of carbon and s-process elements occurs. Recent spectroscopic observations of metal-poor RR Lyrae stars have revealed that their typical abundance patterns are consistent with very metal-poor (VMP) and extremely metal-poor (EMP) giants and dwarfs studied in the halo system of the Milky Way. Of particular interest is the recent discovery of a VMP RR Lyrae that has large overabundances of carbon and the s-process elements. In this work, we showed results obtained with WiFeS observations 2.3m Siding Spring Observatory telescope of a set of newly-identified CEMP stars that are known RR Lyr stars. We confirmed theses stars as CEMP stars (Kennedy et. al., in prep) and will, eventually, test their abundances against new stellar evolution simulations of CEMP stars.