Abstract
ALS 2883 (RA 13^{h} 02^{m} 47^{s}, DEC -63^{o} 50' 08'', M_{v} 10.1) is the first known radio pulsar with an emission B-type companion system, discovered in 1992. The Be companion of ALS 2883 has all line profiles in the visible range in emission. This emission is a common hallmark among many Be stars, and this effect is thought to be due to the presence of a circumstellar environment. Also, the star is orbiting a X-ray source as has been detected by the XMM-Newton Science Operation Center. In this study, we present the observations of ALS 2883 made at the OPD/LNA 1.60 m telescope with the Coudé spectrograph in the range 4000 to 5000 Å and S/N simeq 200, performed in April 2011. First-order estimations of T_{eff} and log g parameters have been performed through Johnson's UBV and JHK photometric calibrations. Projected rotation velocity V sin i has been estimated through the mean of the first zeroes of the Fourier transforms of neutral helium rotation profiles adopting linear, quadratic and square-root limb-darkening laws. The physical conditions of the circumstellar envelope were estimated through the solution of the radiative transport equation assuming local thermodynamic equilibrium within a disk-shaped circumstellar environment with a Keplerian velocity field. The radiative transport equation is solved assuming the Roche model as a boundary condition in the circumstellar environment. Iterating the computations with a downhill-simplex algorithm, this analysis leads to a best solution for an envelope with T simeq 9500 K, gas density ρ simeq 2 × 10^{-15} g.cm^{-3}, internal radius r_{i} simeq 8 R_{odot} and external radius r_e simeq 30 R_{odot}, rotating with V_{rot} simeq 140 km.s^{-1} and expanding with V_{exp} simeq 90 km.s^{-1}.