Abstract
Type IIb Supernovae are the final evolutionary stage of massive stars that were able to retain only a thin (lesssim 1 M_{odot}) H/He external envelope at the time of the explosion. The mechanism of mass-loss that made such final structure possible and the nature of such progenitor stars are still open issues. We present the results obtained from the study of a sample of Type IIb SNe, in particular, of SN 2011hs (Bufano et al., 2013, MNRAS submitted). SN 2011hs was a relatively faint (M_{B} = -15.6 mag) and red Type IIb SN, characterized by a narrow light curve shape. Its spectral evolution showed the metamorphosis typical of this class of SN, from spectra dominated by H I lines to spectra where He I features dominate, but with broad absorption line profiles indicating high expansion velocities. Modeling the light curve of SN 2011hs and its velocity evolution with hydrodynamical calculations, we estimated that the SN is consistent with the explosion of a 3-4 M_{odot} He-core star, from a main sequence mass of 12-15 M_{odot}, ejecting a ^{56}Ni mass equal to 0.04 M_{odot} and characterized by an explosion energy of E≈ 8.5× 10^{50} erg s^{-1}. Based on the light curve evolution, we assumed that the explosion occurred 6 days before the discovery (2,455,872 ± 4 JD), resulting in an adiabatic cooling phase lasting 8 days, similarly to SN 1993J. Since the duration and the decreasing rate of the cooling branch depends mainly on the progenitor size, we could infer from it a progenitor radius of ≈ 500-600 R_{odot}, like a supergiant star. Our modeling rules out models with He core mass >5 M_{odot}, i.e. main sequence masses above 20 M_{odot}. Such a lower limit for the progenitor mass could indicate the possibility of a binary origin, although the radio light curve does not show strong deviations, typically signature of the presence of a companion star.