Abstract
The aim of this work is to present a semi-empirical relativistic approach which uses the general model connecting cosmological theory to observational data derived from galaxy surveys (Ribeiro & Stoeger 2003, ApJ, 592, 1) to study the galactic mass evolution. For this purpose we define a new quantity named the galaxy cosmological mass function (GCMF). We used the FORS Deep Field survey sample of 5558 galaxies in the redshift range 0.5 < z < 5.0 and its luminosity function in the B-band, as well as this sample's stellar masses. We obtained that the GCMF behaves as a power-law given by ζ (z) ∝ [M_{g}(z)]^{-2.3± 0.4}, where M_{g} is the average galactic mass in the studied redshift interval. This result can be seen as an average of the galaxy stellar mass function pattern found in the literature, where more massive galaxies were assembled earlier than less massive ones.