Abstract
According to ΛCDM paradigm, in the early universe the radiation and baryonic matter were coupled due to Thomson scattering. While, dark matter density fluctuations caused gravitational instabilities. These two competing forces caused baryonic acoustic oscillations (BAO) to appear. As the universe continued expanding and cooling, the formation of atoms led to the recombination epoch and decoupling. Afterwards, the oscillations were no longer subject to radiation pressure causing them to stop. Hence, an imprint in the distribution of matter must be present. The scale of this imprint is around 150Mpc and it is used as a standard ruler. A way to study the clustering of matter distribution is through the power spectrum. It measures it through oscillation modes, i. e., a single mode includes all possible information about at a specific scale. Then, BAO can be found as an oscillation present at certain scales. For a cosmological simulation, it is necessary to construct the density field for a point masses distribution. In the present work, the CIC window is used for such task. From this, it is possible to construct the power spectrum through a fast fourier transform. Several corrections as shot noise and aliasing have to be performed for the power spectrum calculation. In this work, the power spectrum was calculated for the MDPL Multidark simulation, as well as, for different halo populations obtained from MDPL simulations, i.e., M>=1e11 M⊙, 1e12 M⊙ and 1e13 M⊙. As a main result, we have shown the BAO signal estimated for the MDPL Multidark simulation. The power spectrum for different halo populations indicates that the tracer halo population affects the BAO signal. It is expected that the amplitude of the BAO increases with the scale of the population studied, although this has to be further quantified.